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Abstract 

This paper illustrates a psychometric approach of broad relevance to psychiatric research instruments. 

Many instruments include indicators related to more than one source of true-score variance due to the: 

(a) assessment of conceptually adjacent constructs; (b) the presence of a global construct underlying 

answers to items designed to assess multiple dimensions. Exploratory structural equation modelling 

(ESEM) is naturally suited to the investigation of the first source, whereas bifactor models are 

particularly suited to the investigation of the second source. When both sources are present, bifactor-

ESEM becomes the model of choice. To illustrate this framework, we use the responses of 1,159 

adults (655 female, 504 male, Mage = 41.84) who completed the French Version of the Composite 

Scale of Morningness (CSM). We investigate the factor structure of the CSM, test the relations 

between CSM factors and Body-Mass Index, and verify the measurement invariance of the model 

across gender and age groups.  

 

Key words: Exploratory structural equation modelling (ESEM), bifactor models, multidimensionality, 

diurnal preference, chronotype, Composite Scale of Morningness (CSM).



Construct-Relevant Multidimensionality 1 

In psychiatric, epidemiological or biomedical research, a key question is whether unobservable 

constructs such as personality traits (e.g., Neuroticism, Extraversion), Internalizing Disorders (e.g., 

anxiety disorders such as Obsessive-Compulsive Disorder, mood disorders such as depression) or 

Externalizing Disorders (e.g., Attention-Deficit Hyperactivity Disorder [ADHD], Conduct Disorder) 

exist as a unitary construct including specificities, or represent a collection of correlated/comorbid 

facets without a common core (Morin et al., in press-b). For example, the DSM-V defines ADHD by a 

core set manifestations leading to the main diagnosis, and individual specificities characterizing 

subtypes. Thus, a generic (G) core component of ADHD should co-exist with more specific (S) 

symptoms (Martel et al., 2011). Similar observations have been previously made for a multitude of 

constructs such as psychosis (Reininghaus et al., 2013), Internalizing Disorders (Simms et al., 2008), 

Quality of Life (Reise et al., 2007), or Intelligence (Gignac and Watkins, 2013). 

Correlated Constructs, or a Global Construct with Specificities 

Psychometrically, the question of whether indicators (questionnaire items, measures, etc.) better 

depict correlated constructs or a global construct with specificities can be verified by contrasting 

alternative measurement models. Exploratory or Confirmatory Factor Analyses (EFA and CFA) 

implicitly assume the presence of separate inter-related dimensions. Conversely, higher-order CFA 

(H-CFA) directly assesses the presence of a global construct. In H-CFA, indicators are used to define 

“first-order” factors, themselves used to define a “higher-order” factor (Rindskopf and Rose, 1988). 

However, H-CFA are limited by their reliance on rigid implicit assumptions (Chen et al., 2006; 

Jennrich and Bentler, 2011; Reise, 2012). More precisely, H-CFA assume that the relation between 

each indicator and the higher-order factor is reflected by the combination of the loading of this 

indicator on a first-order factor, and the loading of this first-order factor on the higher-order factor (a 

constant as far as the indicators associated with a single first-order factor are concerned). Furthermore, 

first-order factors reflect a combination of the variance explained by the higher-order factor and the 

specific variance remaining unexplained by the higher-order factor, creating redundancies between the 

first-order and higher-order factors. In H-CFA, the disturbances of the first-order factors reflect their 

specificity remaining unexplained by the higher-order factor. The relations between indicators and 

these disturbances are also indirect and characterized by the combination of the loadings of the 
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indicators on their first-order factor with a constant for all indicators associated with a single first-

order factor. H-CFA models thus rely on stringent proportionality constraints, assuming that the ratio 

of global/specific variance is exactly the same for all indicators associated with a first-order factor 

(Jennrich and Bentler, 2011; Reise, 2012). Although these constraints introduce parsimony, they are 

unlikely to hold in most situations (Reise, 2012; Yung et al., 1999). 

Bifactor-CFA models (B-CFA) provide an alternative to H-CFA (Chen et al., 2006). In a f-factor 

B-CFA, one Global (G) factor and f-1 Specific (S) factors are used to explain the covariance among a 

set of n indicators. The indicators’ loadings on the G-factor and on one of f-1 S-factors are estimated 

while the other loadings are constrained to be zero, and all factors are set to be orthogonal 

(uncorrelated). B-CFA partitions the total covariance into a G component underlying all indicators, 

and f-1 S components reflecting the residual covariance not explained by the G-factor. Bifactor models 

directly test the presence of a global construct underlying all indicators (G-factor) and whether this 

global construct co-exists with meaningful specificities (S-factors), and are able to do so without 

imposing restrictive proportionality constraints (Chen et al., 2006; Reise, 2012). Furthermore, Jenrich 

and Bentler (2011) showed that H-CFA models were typically unable to recover the structure of data 

generated according to bifactor specifications, whereas B-CFA properly recovered H-CFA structures. 

Multiple Sources of True Score Variance 

B-CFA explicitly accommodates psychometric multidimensionality in the indicators by relaxing 

the independent cluster assumption (ICM) of CFA according to which each indicator is assumed to 

correspond to a single factor. Psychometric multidimensionality occurs when indicators are associated 

with more than one construct, or sources of true score variance (Morin et al., in press-a). Psychometric 

indicators, be they self-reported, informant-reported, or emerging from structured diagnostic 

interviews, are very seldom perfectly pure construct indicators. This recognition of the inherently 

imperfect nature of indicators forms the basis of classical test theory (CTT; Nunnally and Bernstein, 

1994), although all implications of this recognition have not been equally well integrated in research. 

In CTT, ratings are assumed to reflect a combination of true score variance and random measurement 

error (estimated in reliability analyses). By definition, “random” measurement error is unrelated to 

other constructs, leading to its absorption within the indicators’ uniquenesses in CFA.  
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CTT further distinguishes among construct-relevant and construct-irrelevant forms of true score 

variance, a distinction covered in discussions of validity. This distinction makes it obvious that 

indicators are expected to include at least some degree of association with other constructs. When 

looking at this issue from the perspective of a single construct, the portion of true score variance that is 

unrelated to the target construct is simply interpreted as reflecting the imperfect validity of the ratings. 

However, because this portion still reflects true score variance, it also reflects a form of validity in the 

assessment of the other constructs to which it is associated – something that only becomes obvious 

when multiple constructs are simultaneously assessed. For example, using complicated words like 

“bitterness” or “fallacious” in a measure for children is likely to induce random measurement error due 

to the need to guess the meaning of the word, producing higher uniquenesses (lower reliability). 

However, even when completely reliable, ratings of insomnia are likely to present significant levels of 

true score (i.e., valid) associations with multiple constructs such as depression, anxiety, or drug abuse. 

Above, we discussed one process through which indicators might be validly associated with more 

than one form of true score variance (Morin et al., in press-a) due to the simultaneous assessment of a 

more global construct (e.g., Intelligence; ADHD) coexisting with specificities (e.g., vocabulary; 

hyperactivity). Bifactor models are required to directly investigate this possibility (Chen et al., 2006; 

Reise, 2012). Indeed, if data simulated according to a bifactor-CFA was analysed using ICM-CFA, the 

unmodelled G-factor would be absorbed through an inflation of the factor correlations, calling into 

question the discriminant validity of the factors (Morin et al., in press-a).  

It is also typical for indicators to present construct-relevant associations with more than one source 

of true score variance located at the same conceptual level, particularly in instruments designed to 

assess conceptually-related and partially overlapping domains, such as inattention and hyperactivity 

(ADHD), or depression and anxiety (Internalizing Disorders). This second form of construct-relevant 

multidimensionality is typically expressed through cross-loadings in EFA but is constrained to be zero 

in ICM-CFA, H-CFA, or B-CFA. The simple observation that many indicators are inherently expected 

to present meaningful associations to multiple sources of true score variance shows that ICM 

requirement for pure indicators relies on an inherently flawed logic.  

In sum most psychometric indicators are likely to present at least some level of systematic 
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association with other constructs. Although “pure” indicators may exist, we surmise that such 

indicators remain at best a convenient fiction (Marsh et al., 2014; Morin et al., in press-a). Simulation 

studies have clearly demonstrated that, even when small (i.e., as low as .100) and substantively 

meaningless cross-loadings are present in the population model but ignored in ICM-CFA models, the 

factor correlations will tend to be substantially biased (Asparouhov and Muthén, 2009; Marsh et al., 

2013; Morin et al., in press-a; Schmitt and Sass, 2011). Although B-CFA models relax ICM 

assumptions to some extent, they still ignore cross-loadings, which tends to result in inflated estimates 

of the variance attributed to the global factor (Morin et al., in press-a; Murray and Johnson, 2013). 

These studies also show that when the population model meets ICM assumptions, relying on models 

allowing for the estimation of cross-loadings (e.g., EFA) will nevertheless result in unbiased estimates 

of factor correlations. Going back to the flawed argument that cross-loadings “change” the nature of 

the constructs, these results rather show that it is the exclusion of cross-loadings that modifies the 

meaning of the constructs.  

Reviving Exploratory Factor Analyses (EFA) 

The foregoing arguments seem to support the revival of classical EFA. Unfortunately, EFA has 

been superseded by the methodological advances associated with CFA/SEM (e.g., goodness-of-fit, 

invariance, predictions, etc.) and the erroneous assumption that EFA was not confirmatory. However, 

the only “critical difference between EFA and CFA is that all cross loadings are freely estimated in 

EFA. Due to this free estimation of all cross loadings, EFA is clearly more naturally suited to 

exploration than CFA. However, statistically, nothing precludes the use of EFA for confirmatory 

purposes” (Morin et al., 2013, p.396). However, because classical EFA models rely on the free 

estimation of all loadings and cross loadings, they have also been criticized for the fact that this free 

estimation of multiple parameters may yield overfitting the data and create an undue level of 

sensitivity to random variations across different data sets. However, EFA has recently been integrated 

with CFA/SEM into the Exploratory Structural Equation Modelling (ESEM; Asparouhov and Muthén, 

2009) framework, making most methodological advances typically reserved to CFA/SEM available 

for EFA (Marsh et al., 2013, 2014; Morin et al., 2013). In particular, the use of goodness-of-fit indices 

adjusted for parsimony makes it easier to compare more parsimonious CFA with EFA models while 
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taking into account the fact that EFA models rely on the estimation of many additional parameters. 

The development of target rotation also makes it possible to use a fully confirmatory approach to EFA 

(Asparouhov and Muthén, 2009; Browne, 2001) through which cross-loadings are freely estimated but 

“targeted” a priori to be as close to zero as possible. Finally, bifactor rotations (Jennrich and Bentler, 

2011), including bifactor target rotation (Reise, 2012; Reise et al., 2011), have recently been 

developed for the estimation of bifactor-ESEM (B-ESEM) models. Finally, ESEM makes it possible 

to directly assess the extent to which an EFA solution can be generalizable across samples, providing a 

more systematic way to directly test the sensitivity of the solution to random sample variations.  

Taken together, these developments form an overarching framework for the investigation of two 

sources of construct-relevant psychometric multidimensionality likely to be present in many 

psychiatric measures. The assessment of hierarchically-organized construct calls for bifactor models, 

whereas the assessment of conceptually-adjacent constructs calls for ESEM. However, bifactor models 

are likely to express unmodelled cross-loadings through an inflated G-factor, whereas ESEM models 

are likely to express an unmodelled G-factor through inflated cross-loadings. B-ESEM models are thus 

most suitable when a measure includes hierarchically-organized and conceptually-adjacent constructs.  

In this study, we illustrate this B-ESEM framework using self-reports on the Composite Scale of 

Morningness (CSM) (Caci et al., 2005, 2009), a short (13-item) measure of Chronotype or diurnal 

preference (an inter-individual difference related to the time of day where a person is the most alert 

and awake, and to preferences for early or late awakening). Picking a short (13 items) and simple scale 

helps to keep the illustration (for which we provide annotated Mplus input codes in the Online 

Supplements) as simple as possible, while demonstrating the broad relevance of this framework for 

psychiatric measurement. We provide theoretical background on the CSM in the online supplements.  

METHOD 

Participants and Material 

This illustration uses data obtained from the parents of the youth involved in the ChiP-ARD study 

conducted in 2010-2011 in 20 kindergarten schools, 30 primary schools, 14 secondary schools from 

Southern France (Caci et al., 2014, in press). Schools were randomly drawn from all public schools 

located in the greater Nice area, and invited to participate until a number of schools sufficient to reach 
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a sample size of approximately 1,000 participants, equally distributed by age group, had been 

recruited. Teachers were then individually invited to participate, and those who agreed sent consent 

forms to the parents of a randomly selected subset of students from their classes (2 to 4 students for 

each class). Through this procedure, 941 students were finally included in the study. In the present 

study, we use data from the parental questionnaires, including the French CSM (Caci et al., 2005, 

2009) and self-reported height and weight. Taking into account the prevalence of single parent 

families, reconstituted families, and families where parents do not fluently speak French based on the 

2009 Census for France (http://www.insee.fr/en/default.asp), our expected sample was 1411 (1.5. 

parent per family). In total, 1166 parents (82.63%) returned completed CSM questionnaires. Seven 

pregnant women were excluded due to the impact of pregnancy on sleep cycles and BMI. This sample 

includes 1,159 parents (22 to 65 years old; Mage = 41.84; MBMI = 23.53), including 655 women 

(56.51%; Mage = 40.84; MBMI = 22.27) and 504 males (43.49%; Mage = 43.12; MBMI = 25.15). 

Compared to 2009 Census data for the city of Nice, this sample tended to be slightly more educated, 

but remained quite representative of the general adult population of Nice (for additional details, see 

Caci et al., 2014). This study is supported by the Commissioner of Education and the Department of 

Education, complied with ethical prescriptions for French medical research, and data management 

procedures were approved by the Commission Nationale Informatique et Liberté. 

Statistical analyses 

Measurement models were estimated using Mplus 7.2 (Muthén and Muthén, 2012) robust weight 

least square estimator (WLSMV) which outperforms Maximum Likelihood for ordered-categorical 

indicators with 5 or less answer categories (Beauducel and Herzberg, 2006; Finney and DiStefano, 

2006). CSM items (see Online Supplements) were recoded prior to the analyses so that a higher score 

reflected morning preference. We successively estimated ICM-CFA, B-CFA, ESEM, and B-ESEM 

models based on the revised CSM 3-factor structure (see Online Supplements). Models based on the 

original factor structure were also estimated, but the results fully supported the superiority of the 

revised factor structure. ESEM was estimated using target rotation, while B-ESEM was estimated 

using bifactor-target rotation (Reise, 2012; Reise et al., 2011). ICM-CFA and B-CFA constrained all 

cross-loadings to be exactly zero, while ESEM and B-ESEM targeted all cross-loadings to be as close 
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to zero as possible. In both B-CFA and B-ESEM, all indicators were allowed to load on a global G-

factor and on a specific a priori S-factor. BMI was then integrated to these models as an outcome 

predicted by the estimated factors.  

Composite reliability was calculated using McDonald’s ω = (Σ|λi|)² / ([Σ|λi|]² + Σδii) where λi are 

the factor loadings and δii, the uniquenesses (McDonald, 1970). Compared with alpha, ω has the 

advantages of being model-based and of taking into account the strength of association between 

indicators and constructs (λi) as well as item-specific measurement errors (δii) (Sijtsma, 2009). 

The final model was submitted to tests of measurement invariance across gender (male versus 

females), age groups (adults younger than 40 years versus older than 40 years), and combinations 

(younger males, older males, younger females, older females). These tests followed the typical 

sequential invariance strategy (Meredith, 1993) adapted for ordered-categorical indicators (Guay et al., 

in press; Morin et al., 2011): (i) configural invariance, (ii) metric/weak invariance (invariance of the 

factor loadings); (iii) scalar/strong invariance (loadings and thresholds); (iv) strict invariance 

(loadings, thresholds and uniquenesses), (v) invariance of the latent variances-covariances (loadings, 

thresholds, uniquenesses and variances-covariances), and (vi) latent means invariance (loadings, 

thresholds, uniquenesses, variances-covariances and latent means).  

The fit of all models was evaluated using the WLSMV χ², the Comparative Fit Index (CFI), the 

Tucker-Lewis Index (TLI), the Root Mean Square Error of Approximation (RMSEA) and its 90% 

confidence interval (Hu and Bentler, 1999; Yu, 2002). Values greater than .900 and .950 for CFI and 

TLI, and lower than .080 and .060 for the RMSEA are respectively indicative of adequate and 

excellent model fit. Fit improvement was evaluated using the MPlus DIFFTEST function (MD2; 

(Asparouhov and Muthén, 2006; Muthén, 2004). Because 2 and MD2 tend to be oversensitive to 

sample size and to minor misspecifications, additional indices were used in tests of invariance (Chen, 

2007; Cheung and Rensvold, 2002): a CFI diminution of .010 or less and a RMSEA augmentation of 

.015 or less between a model and the preceding model indicate that the measurement invariance 

hypothesis should not be rejected. With WLSMV, 2 values are not exact, but adjusted to obtain a 

correct p value. This explains why 2 and CFI can be nonmonotonic with model complexity. CFI 
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improvements should thus be interpreted as random. In contrast, both the TLI and the RMSEA are 

adjusted for the parsimony of the model and, as such, can increase with invariance constraints.  

RESULTS 

The goodness-of-fit indices of the alternative models are reported in Table 1. Results show that 

ICM-CFA provides an unacceptable level of fit to the data (CFI and TLI < .900; RMSEA > .100). B-

CFA and ESEM yield a clearly improved level of fit although they both remain marginal according to 

some indices (TLI < .950; RMSEA > .080). These results suggest that both sources of construct-

relevant psychometric multidimensionality may be present in CSM ratings. Indeed, B-ESEM clearly 

provides the best fit to the data. Thus, based on purely statistical criteria, B-ESEM should be retained. 

However, no analysis should be conducted in disconnection from theory, expectations, and a detailed 

examination of parameter estimates (Marsh et al., 2004; Morin et al., in press-a).  

Table 2 presents the parameter estimates from all models. In ICM-CFA, all factors appear well 

defined by high and significant factors loadings (.50-.96; M =.73) and satisfactory composite 

reliability (ω =.77-.88). However, the fact that this model results in such a poor level of fit to the data 

suggests that it fails to properly represent the underlying structure of the data. Furthermore, ICM-CFA 

factor correlations (.46-.73; M =.63) appear high enough to call into question the discriminant validity 

of some factors, suggesting that CSM ratings may include unmodelled multidimensionality. ESEM 

reveals a substantial reduction of the factor correlations (.30-.57; M =.45) while all factors remain 

clearly defined (.50-.96; M = .73) and reliable (ω = .80-.87). However, although most cross-loadings 

remain small (|.02-.36|; M = .14), some are high enough (> .30 for Items 3 and 9) to suggest that 

another source of unmodelled multidimensionality may be present, explaining the marginal fit of this 

model (TLI <.950; RMSEA >.080).  

This hypothesis is readily confirmed when comparing B-CFA with ICM-CFA. Apart from 

providing a better fit to the data, B-CFA also results is a well-defined G-factor (λ =.16-.77; M =.59; ω 

=.92). Indeed, apart from two items associated with the Activity Planning S-factor that present a lower 

loading on the G-factor (item 2: λ =.34, “…at what time would you go to bed if you were entirely free 

to plan your evening?”; item 7: λ =.16, “At what time in the evening do you feel tired …?”), the 

remaining items all have fully satisfactory loadings on the G-factor (.50 to .77; M = .65) reflecting 
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global diurnal preference. Interestingly, these two items present high loadings on their corresponding 

S-factor “Activity Planning” (.61 and .85), whereas the two remaining indicators of this S-factors 

present much lower loadings (Item 9: λ =.36, “One hears about morning and evening types of people 

…?”; Item 13: λ = .36, “… a morning or evening active individual?”). This suggests that these two 

items (9 and 13) mainly reflect global diurnal preference and only present a low level of specificity 

once their association with the G-factor is taken into account. In contrast, the third S-factor mainly 

appears to represent the specificity associated with items 2 and 7, reflecting Bedtime Preference 

(rather than Activity Planning). This S-factor shares similarity with the Evening Activities factor from 

the original CSM model, while still presenting a significant, albeit small, association with items 9 and 

13. Interestingly, this S-factor still presents satisfactory reliability (ω =.75).  

The results further reveal that the first S-factor (Morning Affect) retains a meaningful level of 

specificity (λ =.37-.72; M =.59; ω =.78), while the second S-factor (Time of Rising) apparently retains 

no meaningful specificity (|.07-.52|; M =.23; ω =.43), and mainly serve control for the limited level of 

residual covariance present in these items once the G-factor is taken into account. Although this B-

CFA model is interesting, the fit of this model is marginal (TLI <.950; RMSEA >.080) and below the 

fit of ESEM (ΔCFI, ΔTLI, ΔRMSEA all ≥.100), suggesting unmodelled cross-loadings.  

The B-ESEM solution supports this assertion. First, the fit of this model is fully satisfactory and 

clearly superior to the fit of all alternative models. Second, the pattern of target loadings mimics the B-

CFA results, showing: (a) a G-factor that is well defined by most items (λ =.50-.84; M =.62; ω =.92) 

apart from items 2 (.29) and 7 (.24) which together define a Bedtime Preference S-factor (λ =.72 and 

.73; versus .26 and .25 for items 9 and 13; ω =.74); (b) a well-defined Morning Affect S-factor (.41-

0.69; M =.58; ω =.80); (c) a weakly defined Time of Rising S-factor (.04-.47; M =.31; ω =.52). 

However, although the reliability of the Time of Rising S-factor remains suboptimal (which is not an 

issue in latent models controlling for reliability), the level of specificity associated with this S-factor is 

higher than in B-CFA. Finally, the cross-loadings remain smaller (|.01-.23|; M =.09) than in ESEM 

(|.02-.36|; M =.14), suggesting that construct-relevant multidimensionality initially absorbed in the 

cross-loadings now serves to map the G-factor. 

Associations with BMI 
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To illustrate the impact of suboptimal measurement models for predictive analyses, we present the 

results of analyses in which CSM factors from the four alternative models are used to predict BMI 

(Table 3). The ICM-CFA results are highly similar to the ESEM results, and the B-CFA results are 

highly similar to the B-ESEM results. This similarity is likely due to the fact that the factors remain 

equally well-defined in the ICM-CFA/ESEM, and B-CFA/B-ESEM, and the fact that cross-loadings 

are small. Three of the four models (ICM-CFA, ESEM, and B-ESEM) result in comparable estimates 

of the percentage of explained variance in BMI levels (approximately 3%). However, the results show 

that retaining a suboptimal model results either in highly different substantive conclusions (ICM-CFA, 

ESEM) or a substantially reduced percentage of explained variance (closer to 2% for B-CFA). Thus, 

when the global diurnal preference factor is “absorbed” through first order factor correlations (ICM-

CFA) or cross-loadings (ESEM), the results suggest that all three CSM factors significantly predict 

BMI. However, when global chronotype is explicitly taken into account (B-ESEM, B-CFA), neither 

global diurnal preference, nor the Bedtime Preference S-factor share any relations with BMI. Rather, 

more positive Morning Affect predicts slightly lower BMI levels, whereas an earlier Time of Rising 

predicts higher BMI levels.  

Measurement Invariance 

The results from the tests of the measurement invariance conducted on the best-fitting B-ESEM 

solution are presented in Table 1. Although all χ 2 and some Δχ 2 are significant, the goodness-of-fit 

indices indicate fully satisfactory model fit at each stage. Furthermore, changes in goodness-of-fit 

indices never decrease more than the recommended guidelines when equality constraints are imposed 

on the loadings, intercepts, uniquenesses, and factor variances-covariances. The TLI and RMSEA 

even revealed an improvement in fit at some steps. Strict measurement invariance of the CSM is thus 

supported across gender, age groups, and combinations, as well as the invariance of the latent 

variance-covariance matrix. The results also suggest the presence of latent mean differences, 

particularly in the combined model (Table 4). Although the four groups do not differ on the Diurnal 

Preference G-factor, older females tend to present a more positive Morning Affect than younger 

females, and males tend to prefer an earlier Time of Rising than females. Although this S-Factor 

presents a lower level of specificity, the fact that these comparisons are based on latent means 
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indicates that they are perfectly reliable. Finally, the results show that men have a later Bedtime 

Preference than females, but that older males prefer getting into bed earlier than younger males.  

DISCUSSION 

In psychiatric, epidemiological and biomedical research, the factor validity of psychiatric 

instruments is typically assessed using first-order or higher-order CFA or EFA. We argued that 

bifactor models provide a more flexible, realistic, and meaningful representation of the data whenever 

these dimensions are assumed to reflect a global underlying construct. We also discussed how the 

assessment of conceptually-adjacent dimensions may lead to psychometric complexity due to the 

unrealism of the expectation that indicators should provide a perfect reflection of a single construct. 

Rather, many indicators correspond to more than one source of true score variance, leading them to 

present significant associations with more than one construct. We argued that the first source of 

construct-relevant psychometric multidimensionality naturally calls for bifactor models (Reise, 2012), 

whereas the second source rather calls for ESEM (Marsh et al., 2014). Finally, bifactor-ESEM appears 

to be preferable when both sources of construct-relevant psychometric multidimensionality are present 

(Morin et al., in press-a). More importantly, the failure to properly consider these sources of construct-

relevant multidimensionality might induce potentially severe biases in terms of both assessment and 

prediction (Marsh et al., 2013, 2014; Murray and Johnson, 2013; Schmitt and Sass, 2011). 

This manuscript presented this overarching bifactor-ESEM framework of broad relevance to 

psychiatric, epidemiological and biomedical research. The implementation of this framework was 

illustrated while using a WLSMV estimation process allowing for a proper representation of the 

ordered-categorical nature of response scales frequently used in psychiatric diagnostic ratings.  

The application of this framework starts with a comparison of ICM-CFA and ESEM to test for 

the presence of multidimensionality due to conceptually-adjacent constructs. Because bifactor models 

tend to absorb unmodelled cross-loadings through inflated global factors, it is critical to start with a 

comparison of ICM-CFA and ESEM. In this comparison, observing substantially reduced factor 

correlations, better fit indices, substantive meaningfulness, and small or easy to explain cross-loadings 

argues in favour of ESEM (Marsh et al., 2013, 2014; Morin et al., 2013, in press-a). In particular, the 

observation of multiple cross-loadings of a reasonable magnitude (≥ .10 or even ≥ .20) in the ESEM 



Construct-Relevant Multidimensionality 12 

solution is particularly important and suggests that a global construct might be present in the data.  

As long as there are reasons to suspect that a global construct might be present, the second step is 

to test this possibility by comparing ICM-CFA and B-CFA. Over and above the observation of better-

fit indices associated with B-CFA, a critical element is the presence of a well-defined G-factor. 

Whenever this is the case, a bifactor representation of the data appears justified. Although it is not 

critical for all S-factors to be equally well-defined – S-factors may sometimes be included to control 

for residual specificities shared among subsets of indicators over and above their association with the 

G-factor – a true bifactor representation should typically result in at least some well-defined S-factors. 

Otherwise, a single-factor model should be seriously considered. Undefined S-factors should simply 

not be interpreted as having a substantive meaning.  

When both sources of construct-relevant psychometric multidimensionality appear to be present 

based on substantive expectations and the results from the previous steps, a B-ESEM representation 

should be pursued. The adequacy of this representation would be supported by the observation of: (a) 

improved goodness-of-fit indices; (b) a well-defined global factor; (c) relatively small cross-loadings, 

ideally smaller than those associated with the ESEM model. Although our results supported a B-

ESEM representation, we do not claim that this framework should be blindly applied to all measures, 

or that B-ESEM will always prove superior. As in any statistical analyses, there is a need to combine 

substantive theory, expectations, common-sense, and proper statistics in order to achieve an adequate 

representation of the data (Morin et al., in press-a). However, we expect that the bifactor-ESEM 

combination may prove to be relevant for a substantial number of applications using complex 

multidimensional measures. It is thus our recommendation that the sequential process described here 

(i.e., contrasting ICM-CFA versus ESEM, ICM-CFA versus B-CFA, and then all of these models 

versus B-ESEM) should be routinely applied to studies of complex instruments.  

The framework described here relies on variable-centred analyses, providing results reflecting a 

synthesis of the relations observed in the total sample. In contrast, person-centred methods aim to 

identify subgroups of participants (i.e., profiles), which qualitatively and quantitatively differ from one 

another on a configuration of indicators (Morin and Marsh, 2015). Hybrid approaches provide a way 

to represent similar forms of construct-relevant multidimensionality through the estimation of a 
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variable-centred factor (reflecting a global tendency shared among indicators) and person-centred 

profiles (reflecting specific areas of strength and weaknesses over and above this global tendency) 

from the same set of indicators (Morin and Marsh, 2015). Importantly, this hybrid framework can be 

used to conduct even more refined explorations of the underlying structure (categorical, continuous, 

ordinal, etc.) and dimensionality of psychiatric constructs (for details, see Clark et al., 2013; Masyn et 

al., 2010). However, this approach requires the estimation of complex and computer-intensive models 

with a known tendency to converge on improper solutions or not to converge at all. For this reason, 

most applications of this hybrid framework uses scale scores (i.e., the sum/average of items used to 

assess a specific dimension), or factor scores from preliminary measurement models (e.g., Morin and 

Marsh, 2015) as indicators. Estimated in this manner, hybrid models thus assume that these scale or 

factor scores provide a proper synthesis of the underlying structure of participants’ responses. In this 

context, the bifactor-ESEM framework presented here appears to represent a critical first step in the 

application of these potentially richer hybrid methodologies. Future statistical research would do well 

to examine more attentively the possible impact of misspecifying the factor structure of an instrument 

when scale/factor scores from this instrument are used in person-centred applications.  
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Table 1. Goodness-of-Fit Statistics of the Alternative Measurement Models 

 WLSMV χ2 (df) CFI TLI RMSEA 90%CI Δχ 2 (df) ΔCFI ΔTLI ΔRMSEA 
ICM-CFA 1252.33 (62)* 0.892 0.864 0.129 [0.123 ; 0.135] — — — — 
B-CFA 556.26 (52)* 0.954 0.932 0.091 [0.085 ; 0.098] — — — — 
ESEM 358.66 (42)* 0.971 0.947 0.081 [0.073 ; 0.088] — — — — 
B-ESEM 105.24 (32)* 0.993 0.984 0.044 [0.035 ; 0.054] — — — — 
Sex invariance          
Configural 107.23* (64) 0.996 0.991 0.034 [0.022 ; 0.045] — — — — 
Weak (loadings) 222.50* (100) 0.989 0.983 0.046 [0.038 ; 0.054] 106.05* (36) -0.007 -0.008 +0.012 
Strong (loadings, intercepts) 306.93* (125) 0.984 0.980 0.050 [0.043 ; 0.057] 91.95* (25) -0.005 -0.003 +0.004 
Strict (loadings, intercepts, uniqu.) 336.08* (138) 0.983 0.980 0.050 [0.043 ; 0.057] 41.12* (13) -0.001 0.000 0.000 
Latent Variance-Covariance 242.32* (148) 0.992 0.991 0.033 [0.025 ; 0.041] 11.51 (10) +0.009 +0.011 -0.017 
Latent Means 358.27* (152) 0.982 0.981 0.048 [0.042 ; 0.055] 56.76* (4) -0.010 -0.010 +0.015 
Age invariance          
Configural 110.39* (64) 0.996 0.990 0.036 [0.024 ; 0.047] — — — — 
Weak (loadings) 114.67* (100) 0.999 0.998 0.016 [0.000 ; 0.028] 27.78 (36) +0.003 +0.008 -0.020 
Strong (loadings, intercepts) 138.08* (125) 0.999 0.999 0.014 [0.000 ; 0.025] 25.34 (25) 0.000 +0.001 -0.002 
Strict (loadings, intercepts, uniqu.) 177.39* (138) 0.996 0.996 0.022 [0.011 ; 0.031] 33.14* (13) -0.003 -0.003 +0.008 
Latent Variance-Covariance 149.85* (148) 1.000 1.000 0.005 [0.000 ; 0.020] 5.55 (10) +0.004 +0.004 -0.017 
Latent Means 193.34* (152) 0.996 0.996 0.022 [0.011 ; 0.031] 21.49* (4) -0.004 -0.004 +0.017 
Sex  Age invariance          
Configural 167.27* (128) 0.997 0.992 0.033 [0.016 ; 0.046] — — — — 
Weak (loadings) 346.67* (236) 0.990 0.987 0.040 [0.031 ; 0.049] 180.64* (108) -0.007 -0.005 +0.007 
Strong (loadings, intercepts) 464.18* (311) 0.986 0.986 0.041 [0.033 ; 0.049] 131.32* (75) -0.004 -0.001 +0.001 
Strict (loadings, intercepts, uniqu.) 528.32* (350) 0.984 0.986 0.042 [0.035 ; 0.049] 74.58*(39) -0.002 0.000 +0.001 
Latent Variance-Covariance 466.13* (380) 0.992 0.994 0.028 [0.018 ; 0.036] 29.89 (30) +0.008 +0.008 -0.014 
Latent Means 610.52* (392) 0.981 0.985 0.044 [0.037 ; 0.051] 79.37* (12) -0.011 -0.009 +0.016 
Note. ICM = Independent cluster model; CFA = Confirmatory factor analysis; B = Bifactor model; ESEM = Exploratory structural equation modelling; 
WLSMV: Robust weighted least square estimator using a diagonal weight matrix, and mean- and variance- adjusted test statistics; χ² = WLSMV chi square; df 
= Degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; CI = confidence interval; 
Δ since previous model; 2 : chi square difference test based on the Mplus DIFFTEST function for WLSMV estimation; ESEM were estimated with target 
oblique rotation; bifactor-ESEM were estimated with bifactor orthogonal target rotation; * p < 0.01. 
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Table 2. Standardized Parameter Estimates from the Alternative Measurement Models. 

 ICM-CFA Bifactor-CFA ESEM Bifactor-ESEM 
Items Factor (λ)  δ G-Factor (λ) S-Factor (λ) δ Factor 1 (λ) Factor 2 (λ) Factor 3 (λ) δ G-Factor(λ) S-Factor 1(λ) S-Factor 2(λ) S-Factor 3(λ) δ 
Morning Affect              
Item 3a  0.79 0.37 0.57 0.37 0.45 0.51 0.34 -0.03 0.44 0.59 0.41 0.21 -0.06 0.44 
Item 4  0.87 0.25 0.64 0.72 0.15 0.96 -0.11 0.06 0.16 0.56 0.69 -0.03 0.01 0.21 
Item 5  0.82 0.33 0.56 0.60 0.33 0.80 0.11 -0.11 0.30 0.53 0.66 0.08 -0.12 0.27 
Item 12  0.72 0.48 0.50 0.53 0.47 0.73 -0.04 0.07 0.47 0.50 0.54 -0.05 0.02  0.45 
Time of Rising              
Item 1 0.76 0.42 0.72 0.27 0.42 -0.03 0.66 0.22 0.40 0.61 0.06 0.46 0.20 0.37 
Item 6 0.61 0.62 0.64 -0.08 0.58 0.30 0.40 -0.03 0.63 0.53 0.23 0.19 -0.08 0.62 
Item 8 0.66 0.56 0.68 -0.07 0.53 0.17 0.36 0.26 0.40 0.66 0.02 0.04 0.06 0.56 
Item 10 0.73 0.47 0.67 0.52 0.28 -0.13 0.80 0.11 0.38 0.64 -0.06 0.47 0.05 0.36 
Item 11 0.77 0.41 0.74 0.21 0.40 0.15 0.74 -0.06 0.36 0.67 0.16 0.41 -0.09 0.36 
Activity Planning              
Item 2 0.61 0.63 0.34 0.61 0.51 -0.02 -0.08 0.77 0.46 0.29 0.04 0.17 0.72 0.36 
Item 7 0.50 0.75 0.16 0.85 0.26 -0.12 -0.20 0.86 0.40 0.24 -0.13 0.01 0.73 0.39 
Item 9 0.96 0.56 0.77 0.36 0.28 0.14 0.36 0.53 0.29 0.84 -0.07 0.01 0.26 0.23 
Item 13 0.74 0.45 0.62 0.36 0.49 0.17 0.17 0.53 0.49 0.74 -0.08 -0.22 0.25 0.34 
Correlations              
 Factor 2 Factor 3 G-Factor Factor 2 Factor 3 Factor 2 Factor 3   G-Factor Factor 2 Factor 3   
Factor 1 0.71 0.46 0.00 0.00 0.00 0.57 0.30   0.00 0.00 0.00   
Factor 2  0.73 0.00  0.00  0.48   0.00  0.00   
Factor 3   0.00       0.00     
Reliability ω α ω α  ω α   ω α    
G-Factor ---  0.92 0.86  ---    0.92 0.86    
Factor 1 0.88 0.81 0.78 0.81  0.87 0.81   0.80 0.81    
Factor 2 0.83 0.76 0.43 0.76  0.80 0.76   0.52 0.76    
Factor 3 0.77 0.72 0.75 0.72  0.82 0.72   0.74 0.72    
Note. a = The full labels of all items used in this analysis and their correspondence to items labels reported in this Table are fully disclosed in the online 
supplements; Non-significant parameters (p ≤ 0.05) are italicized; Main a priori factor loadings are bolded; ICM= Independent cluster model; CFA = 
Confirmatory factor analysis; ESEM = Exploratory structural equation modelling; λ = Standardized factor loading; δ = Standardized uniqueness; G-Factor: 
Global factor from a bifactor model; S-Factor: Specific factor from a bifactor model; ω = Omega coefficient of composite reliability; α = Alpha coefficient of 
composite reliability. 
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Table 3. Relationships between CSM Factors and Body Mass Index (BMI) 

 Relationships with BMI [β (s.e.)] in the various models:  
Factor ICM-CFA ESEM B-CFA B-ESEM 
G-Factor (Diurnal Preference) — — 0.02 (0.03) -0.01 (0.04) 
Factor 1 (Morning Affect) -0.21 (0.05) -0.16 (0.04) -0.10 (0.04) -0.09 (0.03) 
Factor 2 (Time of Rising)  0.30 (0.08) 0.20 (0.05) 0.10 (0.05) 0.15 (0.04) 
Factor 3 (Bedtime Preference) -0.14 (0.06) -0.07 (0.04) -0.03 (0.03) -0.05 (0.04) 
BMI R2  0.03 0.03 0.02 0.03 
Notes: Standardized regression coefficients (β) are reported, with standard errors (s.e.) in parentheses, 
significant differences are in bold (p ≤ 0.05); ICM= Independent cluster model; CFA = Confirmatory 
factor analysis; B = Bifactor model; ESEM = Exploratory structural equation modelling; G-Factor: 
Global factor from a bifactor model; In bifactor models (B-CFA and B-ESEM), “Factors” are in fact 
S-factors (Specific factors); BMI = Body Mass Index; R2 = Proportion of explained variance.  
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Table 4. Latent Means Comparison Between Groups Formed on the Basis of Gender and Age.  

Latent variables Younger 
Females 

Younger 
Males 

Older 
Females 

Older Males 

G-Factor (Diurnal Preference) 
S-Factor 1 (Morning Affect) 
S-Factor 2 (Time of Rising)  
S-Factor 3 (Bedtime Preference) 

.00 

.00 

.00 

.00 

.12 (.13) 
-.04 (.14) 
.45 (.17) 
-.94 (.14) 

.14 (.09) 

.22 (.10) 
-.00 (.12) 
.05 (.11) 

.18 (.11) 

.15 (.11) 

.57 (.13) 
-.57 (.12) 

G-Factor (Diurnal Preference) 
S-Factor 1 (Morning Affect) 
S-Factor 2 (Time of Rising)  
S-Factor 3 (Bedtime Preference) 

-.12 (.13) 
.04 (.14) 
-.45 (.17) 
.94 (.14) 

.00 

.00 

.00 

.00 

.02 (.13) 

.27 (.14) 
-.45 (.17) 
.98 (.14) 

.06 (.11) 

.19 (.13) 

.12 (.14) 

.37 (.13) 
G-Factor (Diurnal Preference) 
S-Factor 1 (Morning Affect) 
S-Factor 2 (Time of Rising)  
S-Factor 3 (Bedtime Preference) 

-.14 (.09) 
-.22 (.10) 
.01 (.12) 
-.05 (.11) 

-.02 (.13) 
-.27 (.14) 
.46 (.17) 
-.98 (.14) 

.00 

.00 

.00 

.00 

.04 (.10) 
-.07 (.11) 
.58 (.13) 
-.61 (.12) 

G-Factor (Diurnal Preference) 
S-Factor 1 (Morning Affect) 
S-Factor 2 (Time of Rising)  
S-Factor 3 (Bedtime Preference) 

-.18 (.11) 
-.15 (.11) 
-.58 (.13) 
.57 (.12) 

-.06 (.11) 
-.19 (.13) 
-.12 (.14) 
-.37 (.13) 

-.04 (.10) 
.07 (.11) 
-.58 (.13) 
.61 (.12) 

.00 

.00 

.00 

.00 
Notes: Latent means are reported, with standard errors in parentheses, significant differences are in 
bold (p ≤ 0.05); In this table, the latent means are fixed to zero in one referent group for identification 
purposes, and the latent means (and their significance) estimated in the other groups reflect deviations 
from this referent groups expressed in standard deviation units; G-Factor: Global factor from a 
bifactor model; S-Factor: Specific factor from a bifactor model.  
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Online Supplements for: 

Exploring Sources of Construct-Relevant Multidimensionality in Psychiatric Measurement: A 

Tutorial and Illustration using the Composite Scale of Morningness 

 
These online supplements are to be posted on the journal website and hot-linked to the 
manuscript. If the journal does not offer this possibility, these materials can alternatively be 
posted on one of our personal websites (we will adjust the in-text reference upon acceptance).  
 

Some Theoretical Background on the Assessment of Diurnal Preference 
 

Chronotype or diurnal preference is an important inter-individual difference related to the time of 
day when a person is the most alert and awake, and to preferences for early or late awakening. Many 
instruments exist to assess diurnal preferences, including the Morningness-Eveningness Questionnaire 
(MEQ) (Horne and Östberg, 1976), the Diurnal-Type scale (DTS) (Torsvall and Âkerstedt, 1980) and 
the Circadian-Type Questionnaire (CTQ) (Folkard et al., 1979). The Composite Scale of Morningness 
(CSM) was created through the selection of the “best”, or most discriminant items available in the MEQ, 
DTS and CTQ (Smith et al., 1989). The authors used principal component analyses (PCA) to reduce a 
pool of 26 items to 19 items. Then, they discarded the only item that loaded onto a fourth component, 
three items with low item-total correlations, and three items with content that did not match the 
component they are assumed to reflect. This procedure led to a 13-item scale assessing three 
components: Morning Activities (items 1,6,8,9,10,11,13), Morning Affect (items 3,4,5,12) and Evening 
Activities (items 2,7) (see next section for the items).  

Since then, researchers interested in the structure of the CSM have found results supporting 
solutions including 1 to 3 factors (Di Milia et al., 2013). Unfortunately, previous EFA studies (Caci et 
al., 2005; Diaz-Morales and Sanchez-Lopez, 2005; Gil et al., 2008; Önder et al., 2013) have tended to 
rely on suboptimal criteria to select the number of factors (Preacher and MacCallum, 2003), while CFA 
studies have generally converged on solutions presenting only marginal fit to the data (Diaz Morales 
and Sanchez-Lopez, 2004; Randler and Diaz-Morales, 2007), forcing researchers to rely on suboptimal 
post-hoc modifications (Randler and Diaz-Morales, 2007). The Morning Affect factor consistently 
appears in all studies (Caci et al., 2005; Caci et al., 2009; Gil et al., 2008; Önder et al., 2013; Smith et 
al., 2002; Smith et al., 1989). However, the other factors emerge inconsistently, and with a changing 
content. Part of the reason for this could be that the initial study was based on PCA, which typically 
tends to extract a large first principal component explaining a maximum of variance, whereas reflective 
procedures (EFA/CFA) achieve a better distribution of the total covariance among factors. In support of 
this hypothesis, at least two of the items (9,13) included in the original Morning Activities component 
could equally be related to morningness or eveningness. Indeed, a recent study using the French CSM 
supported an alternative solution in which these two items where moved to the Evening Activities factor 
(Caci et al., 2005) – relabelled Activity Planning. This model thus represents a promising solution to the 
previous uncertainty regarding the CSM structure.  

We first contrast ICM-CFA, B-CFA, ESEM, and B-ESEM representations of responses to the CSM. 
Then, we conduct predictive analyses to estimate the relations between CSM factors and Body Mass 
Index [BMI: weight(kg)/height(m)2]. Recent studies suggested positive relations between eveningness 
and obesity (Wang, 2014), as well as with BMI and unhealthy eating habits in obese patients (Lucassen 
et al., 2013). The current study thus tests whether these results extend to a more general population 
sample. We also conduct tests of measurement invariances across subgroups of participants formed on 
the basis of age, gender, and combinations. Tests of measurement invariances are an important pre-
requisite to unbiased group comparisons (Meredith, 1993). As such, these tests verify the extent to which 
the CSM factor structure generalizes across males and females of different age groups, which is 
interesting in light of reports that diurnal preferences may present variations among gender and age 
groups (Caci et al., 2005; Kim et al., 2002; Smith et al., 2002). 
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Composite Scale of Morningness  
 
Smith CS, Reilly C, Midkiff K. Evaluation of three circadian rhythm questionnaires with suggestions 
for an improved measure of morningness. J Appl Psychol. 1989;74(5):728-38.  
 
Items 3, 4, 5, 11 reflect a preference for mornings, whereas items 1, 2, 6, 7, 8, 9, 10, 12, 13 reflect a 
preference for evenings. 
 
Please check the response for each item that best describes you. 
 
1. Considering only your own "feeling best" rhythm, at what time would you get up if you were 

entirely free to plan you day? 
5:00-6:30 a.m. 
6:30-7:45 a.m. 
7:45-9:45 a.m. 
9:45-11:00 a.m. 
11:00 a.m.-12:00 (noon) 

2. Considering only your "feeling best" rhythm, at what time would you go to bed if you were 
entirely free to plan your evening? 

8:00-9:00 p.m. 
9:00-10:15 p.m. 
10:15 p.m.-12:30 a.m. 
12:30 a.m.-1:45 a.m. 
1:45 a.m.-3:00 a.m. 

3. Assuming normal circumstances, how easy do you find getting up in the morning? 
Not at all easy 
Slight easy 
Fairly easy 
Very easy  

4. How alert do you feel during the first half hour after having awakened in the morning? 
Not at all alert 
Slightly alert 
Fairly alert 
Very alert 

5. During the first half hour after having awakened in the morning, how tired do you feel? 
Very tired 
Fairly tired 
Fairly refreshed 
Very refreshed 

6. You have decided to engage in some physical exercise. A friend suggests that you do this one hour 
twice a week and the best time for him is 7:00-8:00 a.m. Bearing in mind nothing else but your 
own "feeling best" rhythm, how do you think you would perform? 

Would be in good form 
Would be in a reasonable form 
Would find it difficult 
Would find it very difficult 

7. At what time in the evening do you feel tired and, as a result, in need of sleep? 
8:00-9:00 p.m. 
9:00-10:15 p.m. 
10:15 p.m.-12:30 a.m. 
12:30 a.m.-1:45 a.m. 
1:45 a.m.-3:00 a.m. 
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8. You wish to be at your peak performance for a test which you know is going to be mentally 
exhausting and lasting for two hours. You are entirely free to plan your day, and considering only 
you own "feeling best" rhythm, which ONE of the four testing times would you choose? 

8:00-10:00 a.m. 
11:00 a.m. - 1:00 p.m. 
3:00-5:00 p.m. 
7:00-9:00 p.m. 

9. One hears about "morning" and "evening" types of people. Which ONE of these types do you 
consider yourself to be? 

Definitively a morning type 
More a morning than an evening type 
More an evening than a morning type 
Definitively an evening type 

10. When would you prefer to rise (provided you have a full day's work - 8 hours) if you were totally 
free to arrange your time? 

Before 6:30 a.m. 
6:30-7:30 a.m. 
7:30-8:30 a.m. 
8:30 a.m. or later 

11. If you always had to rise at 6:00 a.m., what do you think it would be like? 
Very difficult and unpleasant 
Rather difficult and unpleasant 
A little unpleasant but no great problem 
Easy and not unpleasant 

12. How long a time does it usually take before you "recover your senses" in the morning after rising 
from a night's sleep? 

0-10 minutes 
11-20 minutes 
21-40 minutes 
more than 40 minutes 

13. Please indicate to what extent you are a morning or evening active individual. 
Pronounced morning active (morning alert and evening tired) 
To some extent, morning active 
To some extent, evening active 
Pronounced evening active (morning tired and evening alert) 
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Discussion of the Substantive Results About the CSM 

Our results also have relevance for our understanding of the CSM as an instrument and for 
extending knowledge on the construct of diurnal preference. First, our results supported the revised three 
factor-structure of the CSM (Caci et al., 2005). However, they also showed that the CSM items could 
be used to reflect a well-defined global diurnal preference factor. Over and above this global factor, 
most CSM items also serve to define specific factors related to Morning Affect and Bedtime Preference. 
An additional S-Factor related to Time of Rising retained a lower level of specificity but was shown to 
present meaningful associations with categorical (age-groups, gender) and continuous (BMI) covariates. 
More precisely, although the B-ESEM representation of CSM proved to be completely invariant across 
gender and age-groups, the results showed meaningful latent means differences between groups: (a) 
older females presented a more positive morning affect than younger females; (b) males preferred 
getting up earlier than females; (c) men preferred getting into bed later than females, and older males 
preferred doing so earlier than younger males. These results are generally in line with previous results 
(Caci et al., 2005; Carrier et al., 1997; Smith et al., 2002), and future studies are needed to further explore 
the reasons underlying these differences. Finally, and perhaps most interestingly, the results showed 
small but meaningful relations between Morning Affect and lower levels of BMI, and between Time of 
Rising and higher levels of BMI. These results are particularly important as they extend the results from 
previous studies (Lucassen et al., 2013) suggesting relations between diurnal preference and obesity. 
Our results show that this relation generalizes to more normative BMI variations, but also differs 
according to the specific dimension of diurnal preference that is considered. Future research should 
devote more attention to the mechanisms underlying these relations.  
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Title: ICM-CFA 
! Statements preceded by ! are comments not part of the input setup.  
! The following statement is used to identify the data file. Here, the data file is labelled CSM.dat.  
DATA: 
FILE IS CSM.dat; 
! The variables names function identifies all variables in the data set, in order of appearance. 
! The usevariables command identifies the variables used in the analysis.  
! The categorical command identifies the variables that are ordered-categorical in nature.  
VARIABLE: 
NAMES ARE SEX AGE BMI CAT CSM1-CSM13; 
USEVARIABLES ARE CSM1-CSM13; 
CATEGORICAL ARE CSM1-CSM13; 
! The next section defines the analysis. Here robust weighed least square estimation  
! (WLSMV) is used.  
! With WLSMV estimation, it is often useful to increase the number of iterations.  
ANALYSIS: 
ESTIMATOR IS WLSMV; 
ITERATIONS = 10000;  
! The next section defines the model.  
! The @ symbol is use to fix parameter estimates to a specific value.  
! The * symbol indicates the free estimation of a parameter value (or provide a start value).  
! Each input lines ends with ; 
! Factor loadings are noted with BY, regressions with ON, correlations with WITH,  
! means and thresholds are noted between brackets [];  
! variances and residuals are noted without brackets. 
! Here, An ICM-CFA model is specified  
! with 3 factors (F1 to F3) defined by their respective items.  
! the model is identified by fixing the factor variance to 1 (F1-F3@1), allowing first factor 
loading to be freely estimated (*)  
MODEL: 
 F1 BY CSM3* CSM4 CSM5 CSM12; 
 F2 BY CSM1* CSM6 CSM8 CSM10 CSM11; 
 F3 BY CSM2* CSM7 CSM9 CSM13; 
 F1@1; F2@1; F3@1;  
 F1 WITH F2 F3; 
 F2 WITH F3; 
! Specific sections of output are requested. 
OUTPUT: 
  SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL TECH1 TECH2  TECH4 
MODINDICES(ALL); 
 
  



Construct-Relevant Multidimensionality 28 

! Redundant sections are not repeated, we only focus on sections that differ from previous models. 
Title: Bifactor-CFA 
! A bifactor CFA model is specified with 3 specific factors (FS1 to FS3) 
! All items are also used to define a global factor FG.  
! All factors are set to be orthogonal (correlations @0) 
MODEL: 
 FG BY  CSM4* CSM3 CSM5 CSM12 CSM1 CSM6 CSM8 CSM10 CSM11 CSM2 CSM7 CSM9  
 CSM13; 
 FS1 BY CSM3* CSM4 CSM5 CSM12; 
 FS2 BY CSM1* CSM6 CSM8 CSM10 CSM11; 
 FS3 BY CSM2* CSM7 CSM9 CSM13; 
 F1@1; F2@1; F3@1;  
 FG@1; 
 FS1 WITH FS2 FS3@0; 
 FS2 WITH FS3@0; 
 FG WITH FS1 FS2 FS3@0; 
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Title: ESEM 
! An ESEM model is specified with target oblique rotation.  
ANALYSIS: 
ESTIMATOR IS WLSMV; ITERATIONS = 10000;  
ROTATION = TARGET;  
! The factors (F1 to F3) are defined with main loadings from their respective items,  
! In addition to these main loadings, all other cross-loadings are estimated but targeted  
! to be as close to 0 as possible (~0).  
! Factors forming a single set of ESEM factors (with cross-loadings between factors)  
! are indicated by using the same label in parenthesis after * (*1).  
MODEL: 
F1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
F2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
F3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
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Title: Bifactor-ESEM 
! A Bifactor-ESEM model is specified with orthogonal target rotation.  
ANALYSIS: 
ESTIMATOR IS WLSMV; ITERATIONS = 10000;  
ROTATION = TARGET (orthogonal);  
! The specific factors (FS1 to FS3) are defined with main loadings from their respective items. 
! All other cross-loadings are estimated but targeted to be as close to 0 as possible (~0).  
! The global factor is defined through main loadings from all items, and is included in  
! the same set of ESEM factors as FS1-FS3 (*1)  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
 
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
  



Construct-Relevant Multidimensionality 31 

Title: Including an Outcome Variable  
! The predictor (here BMI), is added to the usevariables list.  
! Because BMI is a continuous variable, it is not added to the categorical list.  
VARIABLE: 
NAMES ARE SEX AGE BMI CAT CSM1-CSM13; 
USEVARIABLES ARE CSM1-CSM13; 
CATEGORICAL ARE CSM1-CSM13; 
! Then, in the model sections, the following statements are added to indicate that the factors are used  
! to predict BMI: 
! ICM-CFA and ESEM:  
IMC ON F1 F2 F3; 
! Bifactor-CFA and Bifactor-ESEM:  
IMC ON FG FS1 FS2 FS3; 
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Title: Measurement Invariance across Gender – Configural Invariance. 
DATA: 
FILE IS CSM.dat; 
! The grouping variable is used to identify the groups and labels are given to each of the value 
! An observed grouping variables does not need to be included in the usevariables or categorical list. 
VARIABLE: 
NAMES ARE SEX AGE BMI CAT CSM1-CSM13; 
USEVARIABLES ARE CSM1-CSM13; 
CATEGORICAL ARE CSM1-CSM13; 
GROUPING IS SEX (1=women 2=men); 
! As before.   
! Parameterization = theta is added in order to be able to test for the invariance of uniquenesses.  
ANALYSIS: 
  TYPE IS GENERAL; 
  ESTIMATOR IS WLSMV; 
  ITERATIONS = 10000;  
  PARAMETERIZATION=THETA; 
  ROTATION = TARGET (orthogonal); 
! The global model section is used to define the global model used in both groups.  
! Parameter freely estimated across groups will be specified in group-specific sections.  
! See Morin, Moullec et al. (2011) and Guay, Morin et al. (2014), cited in main manuscript, for 
!additional details on specifications of invariance testing for WLSMV estimation. 
! The first part is as above for the bifactor-ESEM model.  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
! Here, thresholds are specified. For X answers categories, there are X-1 thresholds to be specified 
! using the $1, $1, $3, etc. symbol. By default, thresholds are invariant across groups so only non- 
! invariant thresholds need to be specified here.  
! For tests of configural invariance, the first threshold from each item is set to be invariant, and the  
! second threshold from a referent indicator for each factor.  
!Referent indicator for FS2 (5 categories):  
[CSM1$3]; [CSM1$4];  
!Referent indicator for FS3 (5 categories):  
[CSM2$3]; [CSM2$4]; 
!Referent indicator for FS1 (4 categories):  
 [CSM3$3]; 
!Referent indicator for FG (4 categories):  
 [CSM4$3]; 
! Other indicators: 
[CSM5$2]; [CSM5$3]; 
[CSM6$2]; [CSM6$3]; 
[CSM7$2]; [CSM7$3]; [CSM7$4]; 
[CSM8$2]; [CSM8$3]; 
[CSM9$2]; [CSM9$3]; 
[CSM10$2]; [CSM10$3]; 
[CSM11$2]; [CSM11$3]; 
[CSM12$2]; [CSM12$3]; 
[CSM13$2]; [CSM13$3]; 
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! In the group specific statement, all parameter to be freely estimated in the other group are specified. 
! For X groups, X-1 group-specific statement are needed, starting with group 2.  
! By default, the factor variances are set to 1 in all groups  
! which is as should be for configural invariance.  
! By default the latent means are fixed to 0 in group 1, and freely estimated in group 2 and subsequent,  
! which is as should be for configural invariance.  
! By default, uniquenesses are set to 1 in the first group and freely estimated in the other groups,  
! which is as should be for configural invariance.  
MODEL men:  
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
!Referent indicator for FS2 (5 categories):  
[CSM1$3]; [CSM1$4];  
!Referent indicator for FS3 (5 categories):  
[CSM2$3]; [CSM2$4]; 
!Referent indicator for FS1 (4 categories):  
 [CSM3$3]; 
!Referent indicator for FG (4 categories):  
 [CSM4$3]; 
! Other indicators: 
[CSM5$2]; [CSM5$3]; 
[CSM6$2]; [CSM6$3]; 
[CSM7$2]; [CSM7$3]; [CSM7$4]; 
[CSM8$2]; [CSM8$3]; 
[CSM9$2]; [CSM9$3]; 
[CSM10$2]; [CSM10$3]; 
[CSM11$2]; [CSM11$3]; 
[CSM12$2]; [CSM12$3]; 
[CSM13$2]; [CSM13$3]; 
! Specific sections of output are requested. 
OUTPUT: 
  SAMPSTAT STANDARDIZED RESIDUAL CINTERVAL TECH1 TECH2  TECH4 
MODINDICES(ALL); 
! The following section is used to request a save data file to be used in the calculation of Chi- 
! square differences tests based on WLSMV estimation. 
SAVEDATA: 
  DIFFTEST = BESEM_sex_conf.dat; 
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! Redundant sections are not repeated, we only focus on sections that differ from previous models. 
Title: Measurement Invariance across Gender – Weak Invariance. 
! The DIFFTEST function is used to request a chi square difference test, using the saved data file from 
! the previous model in the sequence.  
ANALYSIS: 
  TYPE IS GENERAL; 
  ESTIMATOR IS WLSMV; 
  ITERATIONS = 10000;  
  PARAMETERIZATION=THETA; 
  ROTATION = TARGET (orthogonal); 
  DIFFTEST = BESEM_sex_conf.dat; 
! The only difference between this model and the previous one is that the specification of factor  
! loadings is not repeated in the group-specific section. These are invariant at default. Also, when the  
! loadings are invariant, the factor variances are freely estimated in all groups but the first.  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
 [CSM1$3]; [CSM1$4];  
 [CSM2$3]; [CSM2$4]; 
 [CSM3$3]; 
 [CSM4$3]; 
 [CSM5$2]; [CSM5$3]; 
[CSM6$2]; [CSM6$3]; 
[CSM7$2]; [CSM7$3]; [CSM7$4]; 
[CSM8$2]; [CSM8$3]; 
[CSM9$2]; [CSM9$3]; 
[CSM10$2]; [CSM10$3]; 
[CSM11$2]; [CSM11$3]; 
[CSM12$2]; [CSM12$3]; 
[CSM13$2]; [CSM13$3]; 
MODEL men:  
 [CSM1$3]; [CSM1$4];  
 [CSM2$3]; [CSM2$4]; 
 [CSM3$3]; 
 [CSM4$3]; 
 [CSM5$2]; [CSM5$3]; 
[CSM6$2]; [CSM6$3]; 
[CSM7$2]; [CSM7$3]; [CSM7$4]; 
[CSM8$2]; [CSM8$3]; 
[CSM9$2]; [CSM9$3]; 
[CSM10$2]; [CSM10$3]; 
[CSM11$2]; [CSM11$3]; 
[CSM12$2]; [CSM12$3]; 
[CSM13$2]; [CSM13$3]; 
SAVEDATA: 
  DIFFTEST = BESEM_sex_weak.dat; 
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Title: Measurement Invariance across Gender – Strong Invariance. 
ANALYSIS: 
  TYPE IS GENERAL; 
  ESTIMATOR IS WLSMV; 
  ITERATIONS = 10000;  
  PARAMETERIZATION=THETA; 
  ROTATION = TARGET (orthogonal); 
  DIFFTEST = BESEM_sex_weak.dat; 
! The only difference between this model and the previous one is that thresholds are invariants across 
! group by default and thus do not need to be specified.  
! When thresholds are invariant, the factor means are freely estimated in all groups but the first. 
! Again: Loadings are invariant by default; variances and uniquenesses are fixed to be 1 in the first  
! group and free in the other groups.  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
MODEL men: 
! Empty 
SAVEDATA: 
  DIFFTEST = BESEM_sex_strong.dat; 
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Title: Measurement Invariance across Gender – Strict Invariance. 
ANALYSIS: 
  TYPE IS GENERAL; 
  ESTIMATOR IS WLSMV; 
  ITERATIONS = 10000;  
  PARAMETERIZATION=THETA; 
  ROTATION = TARGET (orthogonal); 
  DIFFTEST = BESEM_sex_strong.dat; 
! The only difference between this model and the previous one is that here uniquenesses are set to be  
! fixed to 1 in all groups.  
! Again: Loadings and thresholds are invariant by default;  
! Variances and uniquenesses are fixed to be 1 in the first group and free in the other groups.  
! Means are fixed to be 0 in the first group and free in the other groups.  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
MODEL men:  
CSM1-CSM13@1;  
SAVEDATA: 
  DIFFTEST = BESEM_sex_strict.dat; 
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Title: Measurement Invariance across Gender – Variance-Covariance Invariance. 
ANALYSIS: 
  TYPE IS GENERAL; 
  ESTIMATOR IS WLSMV; 
  ITERATIONS = 10000;  
  PARAMETERIZATION=THETA; 
  ROTATION = TARGET (orthogonal); 
  DIFFTEST = BESEM_sex_strict.dat; 
! Here, the variances are fixed to 1 in all groups.  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
! The unrotated covariances (even if the rotated covariances are orthogonal) need to be fixed to  
! invariance across groups. The labels in parentheses indicate that these covariance are fixed  
! to invariance across groups.  
FS1 WITH FS2 (c1); 
FS1 WITH FS3 (c2); 
FS2 WITH FS3 (c3); 
FG WITH FS1 (c4);  
FG WITH FS2 (c5);  
FG WITH FS3 (c6); 
MODEL men:  
CSM1-CSM13@1;  
FG@1; FS1@1; FS2@1; FS3@1; 
SAVEDATA: 
  DIFFTEST = BESEM_sex_vc.dat; 
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Title: Measurement Invariance across Gender – Latent Mean Invariance. 
ANALYSIS: 
  TYPE IS GENERAL; 
  ESTIMATOR IS WLSMV; 
  ITERATIONS = 10000;  
  PARAMETERIZATION=THETA; 
  ROTATION = TARGET (orthogonal); 
  DIFFTEST = BESEM_sex_vc.dat; 
! Here, the means are fixed to 0 in all groups.  
MODEL: 
FG BY CSM1 CSM2 CSM3 CSM4 CSM5 CSM6  
CSM7 CSM8 CSM9 CSM10 CSM11 CSM12 CSM13 (*1);  
FS1 BY CSM1~0 CSM2~0 CSM3 CSM4 CSM5 CSM6~0  
CSM7~0 CSM8~0 CSM9~0 CSM10~0 CSM11~0 CSM12 CSM13~0 (*1);  
FS2 BY CSM1 CSM2~0 CSM3~0 CSM4~0 CSM5~0  
CSM6 CSM7~0 CSM8 CSM9~0 CSM10 CSM11 CSM12~0 CSM13~0 (*1);  
FS3 BY CSM1~0 CSM2 CSM3~0 CSM4~0 CSM5~0  
CSM6~0 CSM7 CSM8~0 CSM9 CSM10~0 CSM11~0 CSM12~0 CSM13 (*1); 
FS1 WITH FS2 (c1); 
FS1 WITH FS3 (c2); 
FS2 WITH FS3 (c3); 
FG WITH FS1 (c4);  
FG WITH FS2 (c5);  
FG WITH FS3 (c6); 
MODEL men:  
CSM1-CSM13@1;  
FG@1; FS1@1; FS2@1; FS3@1; 
[FG@0]; [F1@0]; [F2@0]; [F3@0]; 
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Title: Measurement Invariance across Age 
! Here we used age-groups. In the data set, age is measured as a continuous variable, so it needs to be  
! recoded. This is achieved using the cut command of the define function. The number in parentheses  
! indicates the maximum value of age included in the category 0. Every value over that is coded 1.  
! Then the grouping function of the variable command defines and labels the two groups thus created.  
! The rest of the code for tests of invariance is then exactly as in the previous examples using gender  
! as the grouping variable, except that the group sections of the model commands are defined using  
! the new labels.  
VARIABLE: 
NAMES ARE SEX AGE BMI CAT CSM1-CSM13; 
USEVARIABLES ARE CSM1-CSM13; 
CATEGORICAL ARE CSM1-CSM13; 
GROUPING IS age (0=younger 1=older); 
DEFINE:  
CUT AGE (39.999999); 
[…] 
Model:  
[…] 
Model older:  
[…] 
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Title: Measurement Invariance across Age * Gender 
! Here the If function of the define command is used to define four groups based on the combination o  
! information from the sex variable defining gender and the continuous age variable. The function EQ  
! means “equal” (e.g. sex EQ 1 identifies women); the function LT means “lower than” (LT 40  
! identifies participants aged less than 40 exclusively); the function GE means “greater or equal to”  
! (GE 40 identifies participants aged 40 inclusively or more). 
! The four groups are then identified and labeled using the grouping function (YF: younger females;  
! OF: older females; YM: younger males; OM: older males).  
! Variables created using the define function need to be added as the end of the usevariables list.  
! The rest of the code for tests of invariance is then exactly as in the previous examples using gender  
! as the grouping variable, except that there are now more group sections in the model, and these are  
! defined using the new labels.  
VARIABLE: 
NAMES ARE SEX AGE BMI CAT CSM1-CSM13; 
USEVARIABLES ARE CSM1-CSM13 group; 
CATEGORICAL ARE CSM1-CSM13; 
GROUPING IS group (1=YF 2=OF 3=YM 4=OM); 
DEFINE: 
IF (SEX EQ 1 AND AGE LT 40) THEN group=1; 
IF (SEX EQ 1 AND AGE GE 40) THEN group=2; 
IF (SEX EQ 2 AND AGE LT 40) THEN group=3; 
IF (SEX EQ 2 AND AGE GE 40) THEN group=4; 
[…] 
Model:  
[…] 
Model OF:  
[…] 
Model YM:  
[…] 
Model OM:  
[…] 
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