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Abstract 

Students’ performance in assessments is commonly attributed to more or less effective teaching. 

This implies that students’ responses are significantly affected by instruction. However, the 

assumption that outcome measures indeed are instructionally sensitive is scarcely investigated 

empirically. In the present study, we propose a longitudinal multilevel-DIF model to combine 

two existing yet independent approaches to evaluate items’ instructional sensitivity. The model 

permits for a more informative judgment of instructional sensitivity, allowing the distinction of 

global and differential sensitivity. Exemplarily, the model is applied to two empirical datasets, 

with classical indices (PPDI and posttest multilevel-DIF) computed for comparison. Results 

suggest that the approach works well in the application to empirical data, and may provide 

important information to test developers. 

Keywords: Instructional sensitivity, differential item functioning, multilevel IRT 
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Modeling Instructional Sensitivity Using A Longitudinal Multilevel Differential Item 

Functioning Approach 

 

Students’ performance in assessments is commonly attributed to more or less effective 

teaching. Research on educational effectiveness as well as policy-makers regularly rely on 

student performance data to hold schools and teachers accountable for their actions (Creemers & 

Kyriakides, 2008), hoping to retrieve useful information for scientific, pedagogical or political 

decisions (Pellegrino, 2002). For instance, with the enactment of the No Child Left Behind Act 

of 2001 (NCLB) a nation-wide accountability system based on high-stakes tests was introduced 

in the US, bearing direct impact on school funding (e.g., Taylor, Stecher, O’Day, Naftel, & Le 

Floch, 2010). This course of action implies that students’ responses on tests are affected by 

instruction to a significant degree. However, the assumption that outcome measures indeed are 

sensitive to instruction is scarcely empirically engaged. Although many researchers have 

emphasized the issue of instructional sensitivity (e.g., Baker, 1994; Linn, 1983), the question 

whether instruments and items are in fact sensitive to instruction remains open more often than 

not. At least partly this might be due to the lack of a commonly accepted operationalization of 

instructional sensitivity. Over the years, various indices have been proposed (see Polikoff, 2010), 

most of them representing unique perspectives on item sensitivity due to the context of 

instruction and thereby providing valuable information for test development. 

In the present study, we want to contribute to the measurement of instructional sensitivity 

by combining two prominent yet independent statistical approaches, the Pretest-Posttest 

Difference Index (PPDI; Cox & Vargas, 1966) and differential item functioning (DIF; Holland & 

Wainer, 1993). We believe that an integration of both approaches allows for a more informative 
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and comprehensive judgment of items’ instructional sensitivity. Conceptually, our approach can 

be seen as a generalization of existing indices to investigations with n > 1 classrooms and n > 1 

time points of measurement that reduces to the classical approaches when observing only one 

classroom or one time point, respectively. In the following, we will first give a brief overview of 

the theoretical framework of instructional sensitivity and its measurement. We will then describe 

our modeling approach and apply it to data from two different settings, an intervention study in 

primary schools and a large-scale assessment in secondary schools. 

The Issue of Instructional Sensitivity 

Instructional sensitivity is defined as the psychometric property of a test or a single item 

to be sensitive to instruction (Polikoff, 2010). The concept relates to the extent to which tests and 

items are capable of detecting effects of the implemented curriculum (Travers & Westbury, 

1989), in particular, the content and the quality of instruction (D’Agostino, Welsh, & Corson, 

2007). Airasian and Madaus (1983) emphasize instructional sensitivity as an important aspect of 

construct validity (Cronbach & Meehl, 1955). Specifically, instructional sensitivity can be seen 

as a necessary, though not sufficient, requirement for consequential validity (Messick, 1989) 

when test scores are used to draw inferences on instruction (Yoon & Resnick, 1998). In terms of 

current validity theory, the evaluation of instructional sensitivity provides pieces of evidence for 

valid and invalid test score use and interpretation (Kane, 2001, 2013). 

Fundamental to the concept of instructional sensitivity is the expectation that student 

responses change as a consequence of instruction (Burstein, 1989). In instructionally sensitive 

tests, scores are expected to be positively related to more or better teaching (Baker, 1994). 

Students who received different instruction should produce different responses to highly 

instructionally sensitive items (Ing, 2008). Hence, as a function of an instruments’ instructional 
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sensitivity, the measured construct reflects influences of instruction but also other sources of 

inter-individual ability differences (Burstein, 1989; Muthén, Kao, & Burstein, 1991). 

Correspondingly, Geisinger and McCormick (2010) point out consequences for test fairness in 

diagnosis of individual abilities when highly instructionally sensitive instruments are used while 

not all students in a sample received comparable instruction. 

Operationalizations 

Empirical approaches to quantify instructional sensitivity emerged in the context of 

criterion-referenced testing (e.g., Popham, 1971). Polikoff (2010) recently categorized the 

numerous approaches according to the evidence used: (1) expert judgment (e.g., Popham, 2007), 

(2) instructional measures (e.g., D’Agostino et al., 2007), or (3) item statistics (e.g., Cox & 

Vargas, 1966; Linn & Harnisch, 1981). To date, the validity of ratings on instructional sensitivity 

seems rather unclear, and it still remains unknown which instructional measures really are 

relevant for the investigation of instructional sensitivity (Polikoff, 2010). The present study 

focuses on statistical approaches. 

Statistical approaches to measure the instructional sensitivity of items commonly focus 

on item difficulty or discrimination (Haladyna, 2004). Two prominent approaches are the PPDI 

and the investigation of DIF. Haladyna and Roid (1981) as well as Polikoff (2010) emphasize the 

use of PPDI as it is technically easy to implement and conceptually easy to understand. In an 

experimental study, Ruiz-Primo and colleagues (2012) found items’ PPDI to be proportional to 

the alignment of item characteristics and the implemented curriculum. Also, item selection based 

on PPDI does not negatively impact reliability (Crehan, 1974). PPDI requires longitudinal data 

and is the difference between the proportions of students who get an item right at pretest and 

posttest measurement: 
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PPDI = Difficulty𝑝𝑜𝑠𝑡 − Difficulty𝑝𝑟𝑒    (1) 

Conceptually, PPDI is conceived as the difference in item difficulty between instructed and 

uninstructed students. High absolute PPDI values indicate high instructional sensitivity. 

The first DIF study on instructional sensitivity was conducted by Linn and Harnisch 

(1981). They found uniform DIF for ethnic subgroups in a math achievement test and assumed 

its origin in characteristics of the schooling these subgroups received. Consequently, they 

discussed the use of DIF methodology to detect item bias due to differences in instruction. 

Subsequent studies investigated uniform DIF conditional on different opportunities-to-learn or 

educational experiences (e.g., Clauser, Nungester, & Swaminathan, 1996; Muthén, 1989). While 

these DIF studies ignored the clustering of students within classes, Robitzsch (2009) suggested 

applying multilevel DIF (ML-DIF; Meulders & Xie, 2004) models to analyze instructional 

sensitivity. In contrast to previous DIF approaches that used information on students’ background 

or their learning environment to assign them to a focal or a reference group, this ML-DIF 

approach accounts for the hierarchical data structure and utilizes the clustering of students in 

their respective classes without using further information for the assignment. 

In the ML-DIF model, performance on all items depends on the same latent ability 

variable θ, which is decomposed into a classroom-specific and an individual component. In this 

respect, the model is similar to a unidimensional IRT model. However, the item difficulties are 

allowed to vary across classes, which would constitute a violation of assumptions for most IRT 

models commonly used for measurement purposes. Consequently, the ML-DIF model is less a 

scaling model than a model to analyze response processes to single items, accounting for overall 

individual and classroom-specific ability levels. In a three-level ML-DIF model with responses 

nested in students and classes, the probability that person v answers item i correctly is given by: 
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𝑙𝑜𝑔𝑖𝑡[𝑝(𝑋𝑣𝑖𝑘 = 1)] = 𝜃𝑘 + 𝜃𝑣𝑘 − 𝛽𝑖𝑘,    (2a) 

where 𝜃𝑘 is the average ability of class k, that is, the classroom-specific ability component, and  

𝜃𝑣𝑘 is the individual deviation in ability of person v from the corresponding class mean, that is, 

the individual ability component. Parameter 𝛽𝑖𝑘 is the difficulty of item i in class k. Both the 

classroom-specific and the individual ability component are assumed to be mutually independent 

and normally distributed, with means 𝜇 and 𝜇𝑘 and variances 𝜎2 and 𝜏2. Similarly, the 

classroom-specific item difficulties are normally distributed with mean 𝛽𝑖 and variance 𝜐𝑖²: 

𝜃𝑘  ~ 𝑁𝑜𝑟𝑚(𝜇, 𝜏²), 

𝜃𝑣𝑘  ~ 𝑁𝑜𝑟𝑚(𝜇𝑘, 𝜎²),         (2b) 

𝛽𝑖𝑘 ~ 𝑁𝑜𝑟𝑚(𝛽𝑖, 𝜐𝑖²). 

The model is not identified. Similar to common IRT models, the ML-DIF model can be 

identified by imposing constraints on the ability or the item difficulty parameters, for example, 

by fixing the means of the latent ability distributions of 𝜃𝑘 and 𝜃𝑣𝑘 to zero. 

As the ML-DIF approach assumes that meaningful differences in instruction received by 

students are due to their class membership, the variation of classroom-specific item difficulties, 

𝜐𝑖², has been conceived as indicating an item’s instructional sensitivity (Robitzsch, 2009). That 

is, the more an item’s difficulty varies between classes, the higher its instructional sensitivity. 

Either approach has major drawbacks. On the one hand, PPDI does not allow modeling 

differences in item learning between classes, although it is reasonable to assume that content and 

quality of teaching may vary between classes. Also, separation of instruction effects from 

maturation is impossible if there is no untreated control group (Polikoff, 2010). On the other 

hand, DIF studies on instructional sensitivity have so far focused solely on cross-sectional data, 
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neglecting variation in item difficulty between classes before instruction. Consequently, it seems 

plausible that ML-DIF and PPDI will oftentimes not lead to consistent results. 

Aims of the Study 

Despite their drawbacks, PPDI and the cross-sectional ML-DIF approach provide 

valuable information on item sensitivity. Hence, we assume that a combination of their unique 

perspectives allows for a more informative judgment of items’ instructional sensitivity in 

accordance with demands of theory. Technically, we propose a longitudinal ML-DIF (LML-DIF) 

model to estimate the change in classroom-specific item difficulties between two time points of 

measurement. In summary, our study aims at investigating three main research questions: (1) Do 

PPDI and the ML-DIF approach provide consistent results in the judgment of items’ instructional 

sensitivity? (2) Can PPDI and ML-DIF be combined in a common approach to quantify 

instructional sensitivity? (3) Does a combination of both approaches allow for a more 

informative judgment? In the following, we first briefly describe the LML-DIF approach. Then, 

we exemplarily apply the LML-DIF model to empirical data from two studies and compare the 

results to those obtained from the PPDI and the cross-sectional ML-DIF approach. 

Modeling Approach 

We combine PPDI and ML-DIF by extending Model (2a) to account for pretest item 

difficulty. Similar to the ML-DIF approach, we assume that meaningful differences in instruction 

received by students are due to their class membership. Accordingly, the item difficulties are 

allowed to vary across classes. Additionally, we assume that the average proficiency is constant 

across time, so that all growth is reflected in the item difficulties. That is, the item difficulties are 

also allowed to vary across time points. In educational research, the assumption that the average 

proficiency is the same before and after instruction is rather unrealistic. Normally, one would 
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assume that item parameters are invariant and hence the growth in proficiency is reflected in the 

ability parameters (e.g., Kolen & Brennan, 2004). However, allowing the item difficulties to vary 

across time is necessary to determine each item’s sensitivity. Otherwise, change in proficiency as 

captured by a single item would not become noticeable in the item’s difficulty parameter, but in 

the ability parameters, rendering the identification of instructionally sensitive items impossible. 

In the resulting LML-DIF model, the probability that person v answers item i at time t correctly 

is given by: 

𝑙𝑜𝑔𝑖𝑡[𝑝(𝑋𝑡𝑣𝑖𝑘 = 1)] = 𝜃𝑡𝑘 + 𝜃𝑡𝑣𝑘 − 𝛽𝑡𝑖𝑘,    (3a) 

with: 

𝜃𝑡𝑘  ~ 𝑁𝑜𝑟𝑚(𝜇𝑡, 𝜏𝑡²), 

𝜃𝑡𝑣𝑘  ~ 𝑁𝑜𝑟𝑚(𝜇𝑡𝑘, 𝜎𝑡²),          (3b) 

𝛽𝑡𝑖𝑘 ~ 𝑁𝑜𝑟𝑚(𝛽𝑡𝑖, 𝜐𝑡𝑖²). 

For each time point of measurement, the mean ability of class k, 𝜃𝑡𝑘, the individual deviation of 

person v from the corresponding class mean, 𝜃𝑡𝑣𝑘, and the classroom-specific item difficulty, 

𝛽𝑡𝑖𝑘, are estimated. Given 𝛽𝑡𝑖𝑘 for two time points t = 1 and t = 2, we define classroom-specific 

pretest-posttest difference values: 

Δ𝛽𝑖𝑘 = 𝛽2𝑖𝑘 − 𝛽1𝑖𝑘           (3d) 

As the differences between two normally distributed variables are normally distributed, we 

assume that:1 

Δ𝛽𝑡𝑖 ~ 𝑁𝑜𝑟𝑚(𝜇𝑖, 𝜙𝑖²).          (3e) 

Expression (3e) contains beneficial information for the judgment of an item’s instructional 

sensitivity. Parameter 𝜇𝑖 indicates the average Pretest-Posttest-Difference (PPD) of item i across 

classes, and thus reflects the global sensitivity of item i to instruction. Its variance component, 
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𝜙𝑖², describes the variation of the PPD between classes. Therefore, PPD-variance reflects the 

item’s differential sensitivity to instruction.  

Table 1 
2 × 2-Typology of instructional sensitivity 

 Average PPD 
PPD-variance Low High 

Low not 
sensitive global 

High differential global & 
differential 

 

A combination of information on global and differential sensitivity allows the distinction 

of four types of instructional sensitivity (see Table 1). When average PPD and PPD-variance are 

low, items are considered not sensitive to instruction. Items with high average PPD, but low 

PPD-variance, are globally instructionally sensitive. Such items strongly change in difficulty 

across time points, but the change is almost equal for all classes. In contrast, items with low 

average PPD and high PPD-variance are differentially instructionally sensitive. These items 

reveal disparities in item-specific learning between classrooms, but as the low average PPD 

indicates, the global learning effect is rather nondirectional. While item difficulty decreases 

within some classes, it increases in other classes. Although this pattern is not very likely to be 

observed in practice, it might occur, for example, if items tap into very specific knowledge that is 

disremembered in a rather short time span after being learned. Finally, items with both high 

absolute PPD values and high PPD-variance are considered globally and differentially sensitive. 

Such items reveal disparities in item-specific learning with a global learning effect that is rather 

unidirectional across classes. Although the boundaries between these categories are fluent, we 

will debate the potential use of each pattern of instructional sensitivity in the discussion section. 



MODELING INSTRUCTIONAL SENSITIVITY USING LML-DIF 11 

Application to Empirical Data 

We exemplarily applied the LML-DIF approach to empirical data from two studies. First, 

we used data from the project ’Individual support and adaptive learning environments in primary 

school’ (IGEL; Hardy et al., 2011). IGEL is a quasi-experimental intervention study evaluating 

adaptive teaching methods in grade level three of German primary schools. Teachers were 

trained in adaptive teaching methods and implemented these in a prestructured curriculum on 

floating and sinking. Hence, content of instruction was intended to be identical in all classrooms 

while the teaching methods varied. Immediately before and after the four and a half lessons 

teaching unit, students’ content knowledge was assessed via multiple-choice and open items. The 

IGEL data set comprised responses from 916 students in 54 classes that participated both in pre- 

and posttest. On average, the time lapse between pretest and posttest was three weeks. 

The IGEL-tests were closely aligned to the intended curriculum of the teaching unit. 

Following the item classification system by Ruiz-Primo, Shavelson, Hamilton, and Klein (2002), 

the items may be considered close to proximal to instruction. Scoring followed students’ 

conceptual understanding of floating and sinking (Kleickmann et al., 2010): naïve conceptions, 

explanations of everyday life, and scientific explanations. Sixteen items were administered at 

pretest and twelve at posttest with seven items common to both measurement points. Each 

student received the same items. Originally, items were selected to fit to the partial credit model 

(Masters, 1982). Intraclass correlation based on weighted likelihood estimates (WLE; Warm, 

1989) for students’ content knowledge was .06 at pretest and .16 at posttest. 

Our analyses focused on the seven joint items. As four items were trichotomous, their 

score categories were recoded into separate dichotomous step indicators, defining the respective 

step functions in a cumulative approach (Agresti, 1990). We dropped the upper score categories 
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of two items as only two students reached them, resulting in a total of nine items (five items + 

four step indicators) included in the analyses. The recoded items showed acceptable fit to the 

one-parameter logistic (1PL) model with weighted mean-square (WMNSQ) values ranging from 

0.95 to 1.06 at pretest and from 0.92 to 1.15 at posttest (cf. Wright & Linacre, 1994). 

Second, we applied the LML-DIF model to empirical data from the DESI study (DESI-

Konsortium, 2008). DESI is a longitudinal German large scale assessment study investigating 

students’ language competencies and language instruction in grade level nine of German 

secondary schools. The target population was all German ninth-graders attending a regular 

secondary school type (i.e., all school types except special needs schools). Data were collected 

from representative samples from all 16 German federal states. A total of 219 schools were 

sampled with probabilities proportional to size and up to two classes within each school were 

sampled randomly. The DESI data set comprised responses from 10,965 students in 427 classes. 

Our analyses focused on a language-awareness test comprising 34 items, administered at 

the beginning and the end of the school year 2003/2004 (Eichler, 2007). Following the 

classification system by Ruiz-Primo et al. (2002), the DESI items may be considered as rather 

distal to instruction. The DESI items were administered in a multi-matrix testlet design with 

anchoring. On average, eight students per class received the same item at one time point of 

measurement. No student received the same item twice. All items were scored dichotomously as 

either correct (1) or incorrect (0). Item-fit to a 1PL model was acceptable with WMNSQ-values 

ranging from 0.80 to 1.18 at pretest and from 0.82 to 1.20 at posttest. 45% (pre) and 50% (post) 

of the variance in WLEs was situated at the school level, while 50% (pre) and 57% (post) was 

situated at the class and school level. The level-two intraclass correlation was .89 (pre) and .87 

(post). That is, the school level contributed more to variability than the class level. Yet in DESI, 
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at most two classes were assessed per school, and hence, the basis for estimating variation of 

classes within schools is very limited. 

The IGEL and DESI data represent two different settings commonly found in educational 

research, a quasi-experimental intervention design and a large-scale assessment study. However, 

it has to be noted that some caution is advisable when interpreting and particularly comparing the 

results from these data sets. Both studies do not only differ with respect to the proximity of the 

item content to instruction, but also regarding the test administration mode. It cannot be ruled out 

that results are affected by the fact that in IGEL all items were answered twice by each student, 

while in DESI individual students responded to a different subset of items at each time point. 

Estimation 

For the IGEL and the DESI items, we estimated PPDI, ML-DIF for posttest data and the 

LML-DIF model. PPDI was computed based on IRT item difficulty estimates obtained from a 

two-level (students within classes) 1PL model (e.g., Kamata, 2001): 

𝑙𝑜𝑔𝑖𝑡[𝑝(𝑋𝑣𝑖𝑘 = 1)] = 𝜃𝑘 + 𝜃𝑣𝑘 − 𝛽𝑖     (4) 

ML-DIF and LML-DIF were estimated based on the three-level item response models described 

in Equations 2a and 3a, respectively. Estimation of the unknown parameters was carried out 

using R (R Development Core Team, 2008), WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 

2000) and the R2WinBUGS package (Sturtz, Ligges, & Gelman, 2005) in a Bayesian 

framework. The estimation method was MCMC. To identify Models (2a) and (3a), we adjusted 

parameters following Bafumi, Gelman, Park, and Kaplan (2005): 

θ𝑡𝑘
𝑎𝑑𝑗

= 𝜃𝑡𝑘 − 𝜃𝑡𝑘, 

θ𝑡𝑣𝑘
𝑎𝑑𝑗

= 𝜃𝑡𝑣𝑘 − 𝜃𝑡𝑣𝑘,         (5) 

β𝑡𝑖𝑘
𝑎𝑑𝑗

= 𝛽𝑡𝑖𝑘 − 𝜃𝑡𝑘 − 𝜃𝑡𝑣𝑘, 
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dropping index t for Model (2a). Similarly, the means of the latent ability distributions in the 

two-level 1PL models were adjusted to zero. 

As recommended by Gelman and Hill (2006), we assumed noninformative normal 

distributions with mean zero and variance 10,000 as priors for ability and difficulty parameters 

and uniform (0, 100) distributions as priors for standard deviations. Initial values for standard 

deviations were randomly drawn from uniform (0, 1) distributions, while difficulty parameters’ 

initial value was zero. For the two-level 1PL models, we ran four Markov-Chains with 5,000 

iterations each and discarded the first 1,000 iterations as burn-in. Each ML-DIF and LML-DIF 

model ran for 25,000 iterations per chain with a burn-in of 10,000. To reduce autocorrelation, we 

only used every tenth iteration for ML-DIF and LML-DIF analyses. We assessed convergence by 

visual inspection of trace plots and the Gelman-Rubin �̂� statistic. Point estimates were given by 

the means of the posterior distributions (expected a posteriori estimates). 

To evaluate the statistical significance of the items’ posttest ML-DIF variances, we 

specified ML-DIF models with one item’s random DIF effect fixed to zero. We then compared 

model fit to the unrestricted ML-DIF model using the deviance information criterion (DIC; 

Spiegelhalter, Best, Carlin, & van der Linde, 2002). If the unrestricted model’s DIC was 

substantially smaller than the DIC of the restricted model for a specific item, the item’s DIF 

effect was considered as statistically significant. Differences in DIC greater than ten were 

regarded as substantial (Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2010). Similarly, we 

determined the statistical significance of the PPD-variance by specifying LML-DIF models with 

one item’s random DIF effect restricted to zero at both time points of measurement. With respect 

to PPDI, the standard deviation of the posttest expected a posteriori item difficulty estimate was 

used as a criterion for statistical significance. Items with PPDI values exceeding two times the 
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standard deviations of the posttest expected a posteriori item difficulty estimates were considered 

as instructionally sensitive. Directionality of average PPD was judged based on 95% Bayesian 

Credible Intervals (BCIs), considering an item as not globally instructionally sensitive if the 

respective 95%-BCI comprised zero and as globally instructionally sensitive if it did not. 

Results 

All models yielded good convergence with �̂� approximately 1.00 for all parameters. The 

highest upper bound among �̂�-credible intervals was 1.07. Additionally, the distributions of item 

difficulties at the two time points as well as the distribution of the pretest-posttest differences 

were evaluated using the Kolmogorov-Smirnov test, histograms and quantile-quantile plots. For 

all estimates, no meaningful deviations from a normal distribution could be detected. In the 

following, we describe the results for IGEL and DESI data. 

Table 2 
IGEL data: Estimation results for PPDI and posttest ML-DIF variance 

 Difficulty  ML-DIF variance 
Item 𝛽𝑝𝑟𝑒 (SD) 𝛽𝑝𝑜𝑠𝑡 (SD) PPDI M (SD) 95% BCI 
1 2.54 (0.13) –1.34 (0.12) –3.89 0.19 (.12) [0.01, 0.46] 
2 2.19 (0.12) –1.61 (0.12) –3.82 0.19 (.12) [0.01, 0.45] 
3.1 2.11 (0.12)   0.19 (0.11) –1.91 0.32 (.12) [0.11, 0.62] 
3.2 3.56 (0.18)   1.85 (0.12) –1.71 0.72 (.31) [0.30, 1.48] 
4 1.46 (0.10)   0.49 (0.11) –0.97 0.51 (.19) [0.23, 0.97] 
5 0.92 (0.09)   0.01 (0.11) –0.92 0.49 (.17) [0.24, 0.90] 
6 0.95 (0.09) –1.85 (0.12) –2.80 0.21 (.13) [0.01, 0.49] 
7.1 3.59 (0.19)   1.57 (0.12) –2.02 0.45 (.19) [0.16, 0.89] 
7.2 4.97 (0.34)   3.01 (0.16) –1.96 0.46 (.27) [0.09, 1.15] 
Note. M = posterior mean; SD = standard deviation of the posterior mean;  
BCI = Bayesian credible interval 

 

Results IGEL. Table 2 provides pretest and posttest IRT item difficulty estimates, the 

PPDI computed from these estimates, and the posttest item difficulty variation between classes 

from the ML-DIF model. According to PPDI, all IGEL items and step indicators were 

instructionally sensitive with values ranging from −3.89 to −0.92 (M = −2.22, SD = 1.08). 
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Posttest ML-DIF-variances ranged from 0.19 to 0.72 (M = 0.39, SD = 0.18). Three items showed 

statistically negligible ML-DIF-variances. Hence, in contrast to PPDI, only six items (including 

the four step indicators) were instructionally sensitive following the posttest ML-DIF approach. 

Interestingly, items 1, 2 and 6 – with highest PPDI – appeared insensitive. Contrariwise, the step 

indicator 3.2 showed a comparatively moderate PPDI but the highest posttest ML-DIF-variance. 

Estimation results for the LML-DIF model are shown in Table 3. All items revealed an 

average PPD ranging from −3.98 to −0.95 (M = −2.22, SD = 1.15). As none of the BCIs 

comprised zero, all items performed globally sensitive to instruction. IGEL items’ PPD-

variances, indicating variation in change of item difficulties between classes, ranged from 0.22 to 

0.86 (M = 0.52, SD = 0.25). Three items showed no statistically meaningful PPD-variances. 

Hence, six items (including the four step indicators) were differentially sensitive to instruction. 

Combining these information, three IGEL items performed solely globally sensitive, no item was 

differentially sensitive only, two items and the four step indicators appeared globally and 

differentially sensitive, and none of the items was insensitive. 

Table 3 
IGEL data: Estimation results for the LML-DIF model 

 Average PPD  PPD-variance 
Item 𝑀 (SD) 95% BCI  M (SD) 95% BCI 
1 –3.98 (0.18) [–4.35, –3.62]  0.22 (.12) [0.02, 0.49] 
2 –3.95 (0.18) [–4.31, –3.60]  0.36 (.21) [0.05, 0.85] 
3.1 –1.90 (0.16) [–2.21, –1.58]  0.34 (.12) [0.12, 0.62] 
3.2 –1.51 (0.25) [–2.01, –1.04]  0.77 (.29) [0.32, 1.46] 
4 –1.03 (0.16) [–1.34, –0.73]  0.80 (.22) [0.42, 1.31] 
5 –0.95 (0.14) [–1.23, –0.67]  0.50 (.14) [0.26, 0.81] 
6 –2.89 (0.16) [–3.20, –3.00]  0.22 (.12) [0.03, 0.50] 
7.1 –2.03 (0.29) [–2.67, –1.53]  0.86 (.55) [0.24, 2.27] 
7.2 –1.68 (0.38) [–2.54, –1.00]  0.60 (.41) [0.14, 1.66] 
Note. M = posterior mean; SD = standard deviation of the posterior 
mean; BCI = Bayesian credible interval 
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Results DESI. Results from PPDI and ML-DIF approaches for the DESI data are 

presented in Table 4. PPDI values ranged from −1.52 to 1.02 (M = −0.49, SD = 0.47). Given that 

six items had low PPDI values below two times the standard deviations of the posttest 1PL item 

difficulty estimates, these items were considered as insensitive. Accordingly, twenty-eight items 

were regarded instructionally sensitive following the PPDI approach, with one item showing an 

increase in item difficulty. Evaluating DESI items’ posttest ML-DIF, variances ranged from 0.03 

Table 4 
DESI data: Estimation results for PPDI and posttest ML-DIF variance 

 Difficulty  ML-DIF variance 
Item 𝛽𝑝𝑟𝑒 (SD) 𝛽𝑝𝑜𝑠𝑡 (SD) PPDI M (SD) 95% BCI 
1 –0.91 (0.06) –1.10 (0.07) –0.19 0.45 (0.07) [0.31, 0.61] 
2 –0.58 (0.06) –0.63 (0.07) –0.06 0.19 (0.05) [0.09, 0.31] 
3 –0.48 (0.06) –0.45 (0.07) 0.03 0.29 (0.06) [0.18, 0.42] 
4 –0.74 (0.06) –1.47 (0.07) –0.73 0.06 (0.04) [0.01, 0.15] 
5 –1.39 (0.07) –1.72 (0.07) –0.33 0.12 (0.06) [0.03, 0.26] 
6 –1.62 (0.07) –1.80 (0.07) –0.18 0.13 (0.06) [0.03, 0.27] 
7 –2.29 (0.07) –2.83 (0.08) –0.54 0.06 (0.04) [0.01, 0.16] 
8 –0.34 (0.06) –0.70 (0.07) –0.36 0.04 (0.02) [0.01, 0.09] 
9 –0.07 (0.06) –0.45 (0.07) –0.38 0.03 (0.02) [0.00, 0.08] 
10 –1.46 (0.07) –1.50 (0.07) –0.04 0.32 (0.07) [0.19, 0.48] 
11 0.05 (0.06) –0.41 (0.07) –0.46 0.15 (0.05) [0.07, 0.26] 
12 0.14 (0.07) –0.40 (0.07) –0.54 0.17 (0.05) [0.07, 0.28] 
13 –0.98 (0.06) –1.44 (0.07) –0.46 0.08 (0.04) [0.01, 0.17] 
14 0.50 (0.07) –0.24 (0.07) –0.74 0.05 (0.03) [0.01, 0.12] 
15 –1.63 (0.07) –1.72 (0.07) –0.08 0.11 (0.05) [0.03, 0.23] 
16 0.04 (0.06) 0.00 (0.07) –0.04 0.24 (0.05) [0.14, 0.35] 
17 0.44 (0.06) 0.07 (0.07) –0.37 0.08 (0.04) [0.02, 0.17] 
18 0.54 (0.06) –0.14 (0.07) –0.68 0.15 (0.05) [0.06, 0.25] 
19 1.10 (0.06) 0.69 (0.07) –0.41 0.37 (0.07) [0.25, 0.52] 
20 0.89 (0.07) 0.44 (0.07) –0.45 0.13 (0.04) [0.05, 0.22] 
21 –0.19 (0.06) –1.12 (0.07) –0.93 0.07 (0.04) [0.01, 0.15] 
22 1.16 (0.06) 0.43 (0.07) –0.73 0.10 (0.04) [0.03, 0.20] 
23 2.63 (0.07) 3.65 (0.09) 1.02 0.75 (0.19) [0.42, 1.18] 
24 –1.95 (0.07) –2.40 (0.08) –0.45 0.20 (0.09) [0.05, 0.39] 
25 –1.45 (0.06) –2.72 (0.08) –1.27 0.11 (0.06) [0.02, 0.26] 
26 0.73 (0.06) –0.13 (0.07) –0.86 0.82 (0.12) [0.60, 1.08] 
27 –0.27 (0.06) –1.79 (0.07) –1.52 0.20 (0.07) [0.07, 0.36] 
28 –0.23 (0.06) –0.79 (0.07) –0.56 0.48 (0.08) [0.34, 0.65] 
29 0.49 (0.06) –0.29 (0.07) –0.78 0.10 (0.04) [0.03, 0.19] 
30 –0.07 (0.06) –1.08 (0.07) –1.01 0.20 (0.05) [0.10, 0.32] 



MODELING INSTRUCTIONAL SENSITIVITY USING LML-DIF 18 

31 0.87 (0.07) –0.32 (0.07) –1.09 0.25 (0.06) [0.14, 0.39] 
32 –0.66 (0.07) –1.72 (0.09) –1.06 0.40 (0.14) [0.16, 0.69] 
33 2.37 (0.08) 2.16 (0.09) –0.21 0.95 (0.22) [0.55, 1.42] 
34 2.28 (0.08) 2.15 (0.08) –0.13 1.00 (0.20) [0.62, 1.42] 
Note. M = posterior mean; SD = standard deviation of the posterior mean;  
BCI = Bayesian credible interval 

to 1.00 (M = 0.26, SD = 0.26). Twenty-five items were instructionally sensitive, while nine items’ 

ML-DIF-variances were statistically negligible. In summary, more items were instructionally 

sensitive following PPDI compared to the ML-DIF approach. 

Table 5 
DESI data: Estimation results for the LML-DIF model 

 Average PPD  PPD-variance 
Item 𝑀 (SD) 95% BCI  M (SD) 95% BCI 
1 –0.19 (0.10) [–0.39,  0.00]  0.72 (0.09) [0.55, 0.91] 
2 –0.05 (0.10) [–0.25,  0.14]  0.41 (0.08) [0.27, 0.57] 
3 0.03 (0.10) [–0.16,  0.23]  0.53 (0.08) [0.39, 0.69] 
4 –0.74 (0.10) [–0.94,–0.54]  0.20 (0.06) [0.10, 0.32] 
5 –0.35 (0.11) [–0.55,–0.14]  0.25 (0.07) [0.12, 0.39] 
6 –0.17 (0.11) [–0.38,  0.04]  0.30 (0.07) [0.17, 0.46] 
7 –0.53 (0.12) [–0.76,–0.30]  0.20 (0.07) [0.09, 0.36] 
8 –0.37 (0.10) [–0.56,–0.17]  0.16 (0.04) [0.08, 0.26] 
9 –0.39 (0.10) [–0.48,–0.19]  0.20 (0.05) [0.11, 0.30] 
10 –0.02 (0.10) [–0.22,  0.18]  0.67 (0.10) [0.48, 0.87] 
11 –0.50 (0.10) [–0.69,–0.30]  0.31 (0.06) [0.20, 0.44] 
12 –0.59 (0.10) [–0.79,–0.38]  0.34 (0.08) [0.20, 0.50] 
13 –0.47 (0.10) [–0.67,–0.25]  0.17 (0.05) [0.08, 0.30] 
14 –0.76 (0.10) [–0.97,–0.56]  0.18 (0.06) [0.07, 0.31] 
15 –0.08 (0.11) [–0.29,  0.12]  0.28 (0.07) [0.15, 0.43] 
16 –0.05 (0.10) [–0.24,  0.15]  0.41 (0.07) [0.29, 0.55] 
17 –0.38 (0.10) [–0.57,  0.18]  0.36 (0.06) [0.25, 0.49] 
18 –0.70 (0.10) [–0.89,–0.50]  0.29 (0.06) [0.17, 0.42] 
19 –0.44 (0.10) [–0.64,–0.24]  0.56 (0.08) [0.42, 0.72] 
20 –0.48 (0.11) [–0.69,–0.28]  0.33 (0.09) [0.18, 0.52] 
21 –0.95 (0.10) [–1.16,–0.76]  0.15 (0.05) [0.07, 0.27] 
22 –0.76 (0.10) [–0.96,–0.55]  0.24 (0.06) [0.13, 0.36] 
23 1.13 (0.13) [  0.87,  1.39]  1.24 (0.22) [0.85, 1.69] 
24 –0.49 (0.11) [–0.71,–0.27]  0.29 (0.09) [0.13, 0.50] 
25 –1.31 (0.11) [–1.54,–1.09]  0.21 (0.07) [0.09, 0.38] 
26 –0.97 (0.10) [–1.17,–0.77]  1.13 (0.12) [0.91, 1.37] 
27 –1.59 (0.10) [–1.80,–1.39]  0.36 (0.08) [0.22, 0.53] 
28 –0.61 (0.10) [–0.81,–0.41]  0.81 (0.09) [0.64, 1.00] 
29 –0.81 (0.10) [–1.01,–0.62]  0.27 (0.06) [0.16, 0.40] 
30 –1.02 (0.10) [–1.22,–0.82]  0.45 (0.07) [0.31, 0.61] 
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31 –1.23 (0.10) [–1.43,–1.03]  0.39 (0.07) [0.25, 0.54] 
32 –1.11 (0.12) [–1.35,–0.87]  0.70 (0.16) [0.41, 1.05] 
33 –0.12 (0.14) [–0.38,  0.15]  1.24 (0.24) [0.81, 1.75] 
34 –0.12 (0.13) [–0.37,  0.15]  1.39 (0.24) [0.95, 1.89] 
Note. M = posterior mean; SD = standard deviation of the posterior 
mean; BCI = Bayesian credible interval 

Estimation results for the LML-DIF model are shown in Table 5. In the longitudinal 

approach, average PPD values ranged from −1.59 to 1.13 (M = −0.51, SD = 0.50). As nine of the 

BCIs comprised zero, the respective items were considered not globally sensitive to instruction. 

Hence, twenty-five items were globally sensitive according to their average PPD. PPD-variances 

ranged from 0.15 to 1.39 (M = 0.46, SD = 0.34) with thirty items showing non-negligible PPD-

variances. Combining the information, four items were solely globally sensitive, nine items were 

differentially sensitive only, twenty-one items performed globally and differentially sensitive, 

and none of the items was insensitive. 

Relationships between indices 

Table 6 summarizes frequentist intercorrelations and percent agreement of indices for 

IGEL and DESI data. Values of the conceptually connatural indices – PPDI and average PPD on 

the one hand, and posttest ML-DIF and PPD-variance on the other hand – were highly positively 

associated. PPDI-based measures and dispersion-based approaches were also positively related, 

suggesting that high values on both dispersion-based indices seemed to relate to positive global 

item learning. However, while PPDI-based indices were significantly linked to PPD-variance in 

DESI, statistical relationship to posttest ML-DIF did not reach the .05-significance level. 

Of more importance than the correlations are the judgments on items’ sensitivity based on the 

indices. Within both the IGEL and the DESI data sets, PPDI and ML-DIF do not provide 

consistent results. PPDI and average PPD highly agree in both data sets, with disagreement for 

three DESI items only. Whereas ML-DIF and PPD-variance provide the same results for all the 
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IGEL items, agreement is lower for the DESI items. Finally, average PPD and PPD-variance do 

not coincide for about one third of the items in both data sets. 

 

Table 6 
Intercorrelations and percent agreement of instructional sensitivity indices 

 Intercorrelations  Percent agreement 
 1 2 3 4  1 2 3 4 
1. PPDI – .78 .99 .65  – 67 100 67 
2. ML-DIF .32 – .82 .82  62 – 67 100 
3. Average PPD .99*** .32 – .67  91 53 – 67 
4. PPD-variance .39* .98*** .39* –  71 85 62 – 
Note. *p < .05, **p < .01, ***p < .001; Correlations and percent agreement for 
DESI data (n = 34) are provided below the diagonals, for IGEL data (n = 9) 
above. For IGEL, tests of significance are not reported due to small sample size. 
 

Conclusion & Discussion 

We presented a LML-DIF model to estimate change in classroom-specific item 

difficulties between two time points of measurement, denoting the mean item-specific learning 

across classes as average PPD and the variation as PPD-variance. Directionality of average PPD 

was judged based on 95%-BCIs, considering an item as globally instructionally sensitive if the 

respective 95%-BCI did not comprise zero. We evaluated the statistical, though not the practical, 

relevance of PPD-variance via comparison to models where the respective variance components 

were restricted to zero, considering an item as differentially instructionally sensitive if the 

unrestricted model had a substantially lower DIC. Information on global and differential 

sensitivity was combined to judge an item’s instructional sensitivity. Conceptually, our approach 

can be conceived as integrating two existing approaches, PPDI and ML-DIF, which were applied 

for comparison. As we used IRT item difficulties to calculate PPDI, values reported are relative 

measures of instructional sensitivity for items within a test and are not directly comparable 

across tests. 
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Technically, we found the LML-DIF model to work well in its application to empirical 

data. All parameters of interest were estimated with reasonable certainty. As indicated by trace 

plots and �̂�, convergence was satisfying after 10,000 iterations. Admittedly, mixing was slow for 

variance parameters 𝜐𝑖²and 𝜙𝑖² Markov-Chains, which tended to be highly autocorrelated when 

𝜐𝑖²and 𝜙𝑖² values were close to zero. 

Results indicated that judgment of items’ instructional sensitivity based on PPDI and the 

ML-DIF approach was not consistent. In contrast, a combination of both indices yielded a more 

detailed judgment of instructional sensitivity. PPDI and average PPD mostly agreed whether an 

item was sensitive or not, whereas PPD-variance identified more items instructionally sensitive 

than the ML-DIF approach. That is, while average PPD and PPDI generally capture the same 

information, ML-DIF and PPD-variance do not. Technically, the ML-DIF approach focuses on 

differences in item difficulty between classes at a given time point. In contrast, PPD-variance 

relates to differences in item-specific learning across time points between classes. Accordingly, 

both indices relate to different sources of variance. Given its developmental perspective, PPD-

variance comprises more construct-relevant variance compared to the ML-DIF approach. 

Whether judgment based on the ML-DIF approach and PPD-variance is consistent 

depends on specific constraints. As PPD-variance takes the classroom-specific base level in item 

difficulty into account, the ML-DIF and PPD-variance should agree when there is no variation in 

item difficulty before instruction. Then, the extent of variation in item difficulties across classes 

at posttest should be equivalent to the extent of variation in item-specific learning across classes. 

In fact, this is the case for the IGEL items, but not for the DESI data. Although PPD-variance 

identified more DESI items as sensitive than the posttest ML-DIF approach, we assume that this 

result need not always occur in empirical data. Suppose item-specific learning is equal across all 
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classes in a sample and at the same time there is significant ML-DIF variance at pretest and 

posttest. That is, item difficulties vary between classes at both time points of measurement while 

the trajectories of item difficulties across time points form parallel lines. Then, the posttest ML-

DIF approach will identify such items as sensitive, whereas PPD-variance does not. 

Consequently, the combined interpretation of PPD-variance and average PPD in the LML-DIF 

approach may dissent from results of analyses applying both PPDI and ML-DIF concurrently. 

For three reasons, we believe our approach to be beneficial in the evaluation of 

instructional sensitivity compared to existing PPDI and DIF approaches: (1) By including 

baseline data, changes in item difficulties can be more unequivocally attributed to instruction, (2) 

by adding classrooms as units of observation, the model accounts for differences at the level 

where instruction actually happens, and (3) with respect to the different sources of variance that 

are relevant in empirical research, that is, variance between time points and variance between 

groups within a sample, a single statistical indicator is not able to describe an item’s instructional 

sensitivity sufficiently. While PPDI and DIF approaches focus either on variation between time 

points (PPDI) or variation between groups (DIF), the LML-DIF approach accounts for both 

sources of variance as it combines existing indices’ perspectives in a longitudinal model-based 

approach. Within the LML-DIF approach, average PPD and PPD-variance are inextricably 

linked to describe an item’s global and differential sensitivity. Nevertheless, effects of maturation 

can still only be eliminated by including an untreated control group, and classroom-specific PPD 

values might be affected by student, teacher or classroom characteristics, for instance classroom 

composition regarding students’ socio-economic status or migrational background. 

Regarding instructional sensitivity, average PPD and PPD-variance provide 

comprehensive statistical information on test items’ capability to capture effects of instruction, 
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allowing the distinction of global and differential sensitivity. As Glaser (1963) stated, test 

construction needs information on how well items differentiate between groups treated 

differently. Our approach is in accordance with this demand by expressing both how an item 

differentiates between a) instructed and uninstructed students, and b) instructional settings within 

a sample. For existing instruments, empirical evidence to support test score interpretation is 

gathered by determining the extent to which item responses are – or are not – influenced by 

instruction. For the construction of achievement tests assessing the effectiveness of instructional 

settings, the combination of information on global and differential item sensitivity allows test 

developers to select items fitting to the purposes of their assessments. As empirical data indicate, 

when using only either the PPDI or posttest ML-DIF approach, results on instructional sensitivity 

may be partially incomplete and potentially misleading. 

In practice, items that are globally, but not differentially, sensitive might be preferred in 

testing of individual abilities, competencies, or maturation. While instruction may contribute to 

answering items correctly, item responses are less dependent on whether a student received 

specific instruction or not. In contrast, responses on differentially sensitive items are significantly 

affected by class membership, potentially leading to a misattribution of results to inter-individual 

differences. Accordingly, the concept of differential instructional sensitivity highlights Geisinger 

and McCormick’s (2010) concerns on test fairness when high-stakes tests are administered to 

students with heterogeneous educational backgrounds. Hence, in diagnosis of individual abilities, 

differentially sensitive items should presumably be avoided, unless including them on purpose. 

If one is less interested in individual ability but rather classroom-level characteristics, 

items that are differentially sensitive appear beneficial. For instance, let us assume we wanted to 

check the implementation of a certain curriculum in class. In this case, we might choose items 
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that can only be solved via knowledge or abilities gained through the exact implementation of 

the curriculum, consciously penalizing students who did not receive instruction according to the 

intended curriculum. Consequently, the measured construct would comprise both individual 

ability and classroom characteristics, and scores would reflect the interplay between students’ 

ability and the degree to which the curriculum was implemented. Yet, relating the results to the 

effectiveness of the curriculum would be an ecological fallacy, creating artificial effect sizes 

when comparing classes that implemented the curriculum to those who did not. 

Selecting items that are both globally and differentially sensitive may appear to be a 

natural choice in testing effects of classroom-level characteristics. Due to instruction, learning is 

typically expected to be rather unidirectional across classes. Nevertheless, some items might 

become more difficult for students as a consequence of instruction. Apparently, item difficulty 

may increase when instruction in classrooms is detrimental to learning, for example, badly 

structured or error-prone. But difficulty may also increase when students’ gain in knowledge 

leads to more intra-individual cognitive conflicts, inducing greater uncertainty in students’ 

answering process than before instruction (see Vosniadou, 2007). 

Items that appear insensitive need special attention. If an item performs neither globally 

nor differentially sensitive, its instructional insensitivity might be due to three reasons (cf. 

Haladyna, 2004): a) the item has nothing to do with the instruction students in a sample received, 

b) the item is so difficult or easy in both pre- and posttest that either everybody or nobody can 

solve it – despite instruction, or c) there actually is no effect of instruction. Option b can be 

verified by inspecting the pre- and posttest data. To decide whether options a or c apply, further 

information on the item in question and the instruction are needed. For example, when all classes 

in a sample did not implement the part of the curriculum the item aims at, information on 
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whether the item has proven to be sensitive in previous studies are beneficial. If so, the item 

might indeed be instructionally sensitive, but the content needed had not been learned yet. 

Hence, we advise careful examination of reasons why items are flagged insensitive.  

Notwithstanding the previous considerations, we would like to emphasize that in many 

situations, different types of instructionally sensitive items will be required. As the same 

assessment commonly addresses various recipients, its developers might want to consider their 

respective needs and purposes for test score interpretation, and hence inclusion of different types 

of instructionally sensitive items might be necessary (Linn, 1983; Ruiz-Primo et al., 2002). 

Finally, the proposed statistical indicators themselves need validation. The LML-DIF 

approach provides information on the amount of variability in learning between classrooms, but 

the source of this variation remains unknown. Classroom membership can be confounded with 

other variables affecting student learning, for example, socio-economic classroom composition. 

Thus, the variation may also originate in student or classroom characteristics unrelated to 

instruction. Nevertheless, statistical variation is a necessary, though not sufficient, requirement 

for instructional sensitivity. Instructional sensitivity may then be conceived as the proportion of 

variance in item parameters explained by content and quality of teaching. Accordingly, average 

PPD and PPD-variance may mainly function as minimum criteria for the evaluation of 

instructional sensitivity. They support – but cannot replace – the analysis of the relationships 

between item responses and empirical measures of instruction. Consequently, further analyses 

will extend the LML-DIF model to incorporate teaching characteristics. 

Note 

1As β1ik and β2ik each have their own normal distributions, the distribution in expression 

(3e) is theoretical in nature and therefore not part of the model itself. 
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