
Bengs, Daniel; Brefeld, Ulf; Kröhne, Ulf
Adaptive item selection under matroid constraints
Journal of computerized adaptive testing 6 (2018) 2, S. 15-36, 10.7333/1808-0602015

Quellenangabe/ Reference:
Bengs, Daniel; Brefeld, Ulf; Kröhne, Ulf: Adaptive item selection under matroid constraints - In: Journal
of computerized adaptive testing 6 (2018) 2, S. 15-36 - URN: urn:nbn:de:0111-dipfdocs-166953 - DOI:
10.25657/02:16695

https://nbn-resolving.org/urn:nbn:de:0111-dipfdocs-166953
https://doi.org/10.25657/02:16695

Nutzungsbedingungen Terms of use

Gewährt wird ein nicht exklusives, nicht übertragbares,
persönliches und beschränktes Recht auf Nutzung dieses
Dokuments. Dieses Dokument ist ausschließlich für den
persönlichen, nicht-kommerziellen Gebrauch bestimmt. Die
Nutzung stellt keine Übertragung des Eigentumsrechts an diesem
Dokument dar und gilt vorbehaltlich der folgenden
Einschränkungen: Auf sämtlichen Kopien dieses Dokuments
müssen alle Urheberrechtshinweise und sonstigen Hinweise auf
gesetzlichen Schutz beibehalten werden. Sie dürfen dieses
Dokument nicht in irgendeiner Weise abändern, noch dürfen Sie
dieses Dokument für öffentliche oder kommerzielle Zwecke
vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder
anderweitig nutzen.

We grant a non-exclusive, non-transferable, individual and limited
right to using this document.
This document is solely intended for your personal, non-commercial
use. Use of this document does not include any transfer of property
rights and it is conditional to the following limitations: All of the
copies of this documents must retain all copyright information and
other information regarding legal protection. You are not allowed to
alter this document in any way, to copy it for public or commercial
purposes, to exhibit the document in public, to perform, distribute or
otherwise use the document in public.

Mit der Verwendung dieses Dokuments erkennen Sie die
Nutzungsbedingungen an.

By using this particular document, you accept the above-stated
conditions of use.

Kontakt / Contact:

DIPF | Leibniz-Institut für
Bildungsforschung und Bildungsinformation
Frankfurter Forschungsbibliothek
publikationen@dipf.de
www.dipfdocs.de



 

15 |  JCAT  Vol. 6 No. 2   August 2018 
 

Journal of Computerized Adaptive Testing 
 

Volume 6, Number 2, August 2018  

DOI 10.7333/1808-0602015 

ISSN 2165-6592 
 

 
 

The shadow testing approach (STA; van der Linden & Reese, 1998) is considered the state 
of the art in constrained item selection for computerized adaptive tests. The present paper 
shows that certain types of constraints (e.g., bounds on categorical item attributes) induce 
a matroid on the item bank. This observation is used to devise item selection algorithms 
that are based on matroid optimization and lead to optimal tests, as the STA does. In 
particular, a single matroid constraint can be treated optimally by an efficient greedy 
algorithm that selects the most informative item preserving the integrity of the constraints. 
A simulation study shows that for applicable constraints, the optimal algorithms realize a 
decrease in standard error (SE) corresponding to a reduction in test length of up to 10% 
compared to the maximum priority index (Cheng & Chang, 2009) and up to 30% compared 
to Kingsbury and Zara's (1991) constrained computerized adaptive testing. 
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Computerized adaptive testing (CAT; Weiss, 1982) enables improvements in measurement 
accuracy over fixed forms (Segall, 2005). However, while fixed forms make test composition 
obvious to the test designer, adaptive selection of items based exclusively on statistical 
considerations may lead to tests whose composition varies considerably among examinees. This 
gives rise to a number of issues. Among others, face validity may be called into question due 
to a lack of adequate coverage of content areas (van der Linden & Reese, 1998); and 
independence assumptions of the test model may be violated if similar, mutually cluing items 
are administered together, for instance, items derived from a common stem (Leuders et al., 
2017). These problems are avoided by imposing adequate constraints on test composition and, 
hence, on item selection. The literature on constraint management is usually divided into 
approaches based on heuristics versus approaches involving mathematical programming. The 
mathematical programming approach formulates the test assembly problem as an optimization 
problem whose solution yields constraint compliant tests (van der Linden & Reese, 1998) that 
are optimal at the estimated trait level. Basically, this is achieved by optimizing test information 
over the space of all complete tests that are constraint compliant.  

There are two drawbacks to this approach. First, the combinatorial complexity renders the 
problem demanding that the optimization problem posed by the shadow test approach (STA) 
take the form of a 0-1 integer program, which is known to be NP-hard (Karp, 1972), meaning 
that no polynomial time algorithm for its solution is known to exist. Thus, in the worst case, the 
time required to compute a shadow test is exponential to the size of the item bank. In practice, 
however, typical instances of the STA can be solved very quickly by sophisticated optimization 
algorithms, which usually employ the method of branch and bound (Land & Doig, 1960) or 
branch and cut (Padberg & Rinaldi, 1991) to narrow down the space in which to search for the 
optimal solution. These solvers are highly non-trivial to design and implement and, thus, need 
to be acquired in the form of libraries that are external to the CAT software. This also compli-
cates the development and maintenance of the CAT program and renders its application costly 
in terms of labor and funds. Therefore, it seems sensible to ask if the computational and practical 
complexity of the STA is the price to be paid for optimal constrained testing or if simpler, yet 
optimal, solutions exist. Heuristic approaches (Cheng & Chang, 2009; Kingsbury & Zara, 1991) 
do have the benefit of conceptual and computational simplicity and can easily be implemented, 
but fall short of attaining maximal testing efficiency (He, Diao, & Hauser, 2014).  

The purpose of this study was to show that certain types of constraints, notably lower and 
upper bounds on categorical item attributes, induce the structure of a matroid on the item bank. 
Matroids are algebraic structures that provide an abstraction to concepts such as linear inde-
pendence in vector spaces and circuits in graphs, and can be considered central to the analysis 
of various problems in combinatorial optimization (Lawler, 1976). The present interest in 
matroids arises from the fact that matroids provide a formal description of optimization prob-
lems that can be solved optimally by a greedy algorithm (e.g., Edmonds, 1971). Basically, 
greedy algorithms build a solution to a complex problem by starting from the empty set and 
then proceeding to repeatedly add the element that maximally increases the objective function. 
A trivial example of a greedy algorithm can be found in unconstrained maximum information 
item selection, which assembles a maximally informative test by selecting an item that provides 
maximal increase in test information for the current trait estimate. By restricting item selection 
to the tests that are designated feasible by a matroid constraint, this simple strategy carries over 
to constrained test assembly. By virtue of the matroid’s structure, the resulting tests can be 
shown to be optimal and, hence, coincide with the tests assembled by the STA. Combinations 
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of several matroid constraints do not, in turn, lead to matroid constraints but can be solved by 
finding optimal matroid intersections.  

Building on these facts, matroid optimization algorithms can be used to implement optimal 
constrained item selection. In the case of one matroid constraint, the greedy algorithm can, for 
example, be used for content balancing, where it combines the simplicity and low computa-
tional expense of heuristics with the superior measurement efficiency afforded by the STA’s 
optimality. Combinations of two matroid constraints—arising, for instance, from flexible con-
tent constraints or the need for balancing two categorical content attributes at the same time—
can be solved by matroid intersection. Interestingly, matroid intersection requires optimization 
in terms of complete full-length feasible tests, called “shadow” tests. This indicates that 
optimization without look-ahead (the usual strategy employed in heuristic methods) is, in 
general, insufficient for optimal test assembly when complex constraints are involved. In 
contrast to the integer programming approach used with the STA, both the greedy algorithm 
and the intersection of two matroids can be executed in polynomial time. However, combi-
nations of three or more constraints render matroid intersection NP-hard (Parker & Rardin, 
2014), which defines the theoretical limitation of the matroid optimization approach. 

The Problem of Constrained Item Selection 
In essence, the increase in measurement accuracy enabled by CAT is achieved by optimiz-

ing the measurement properties of administered items for each examinee individually. This is 
done by selecting items from the item bank P =  {1, … , n} that maximize an information crite-
rion related to the items’ usefulness for improving the trait estimate. The statistical usefulness 
of an item can be conceptualized in a number of ways, such as the reduction in size of posterior 
credible regions (Segall, 1996), Kullback-Leibler divergence of response likelihoods (Chang & 
Ying, 1996; Veldkamp & van der Linden, 2002) or traditionally, as Fisher’s expected infor-
mation. In each case, maximization of information is connected to improving measurement 
precision. For instance, in the case of maximum likelihood estimation (MLE), the standard error 
of measurement (SEM) at θ,  

 

SET(𝜃𝜃) =
1

�𝐼𝐼T(𝜃𝜃)
, 

 

(1) 

depends reciprocally on Fisher information IT associated with the test T =  {i1, … , iNT
}. Under 

the assumption of additivity, which is made in the remainder of this section, test information is 
given by  

 
𝐼𝐼T(𝜃𝜃) = �𝐼𝐼𝑖𝑖(𝜃𝜃)

i∈T

, (2) 

the sum of the individual items’ information. Now, the very nature of adaptive testing poses 
two demands on test assembly: First, and most obvious, the true trait level is unknown and thus 
is replaced by a provisional estimate 𝜃𝜃�; and second, item selection must be carried out during 
the test. Hence, the objective becomes maximizing test information, shown in Equation 2, by 
selecting the kth item based on its information 𝐼𝐼𝑖𝑖𝑘𝑘 at the provisional trait estimate 𝜃𝜃� = 𝜃𝜃�𝑘𝑘−1. In 
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the absence of any non-statistical requirements on test composition, maximum information item 
selection proceeds to maximize test information, choosing the kth item by  

𝑖𝑖𝑘𝑘 = argmax𝑖𝑖∈P\S𝑘𝑘−1𝐼𝐼𝑖𝑖�𝜃𝜃�𝑘𝑘−1�, (3) 

where S𝑘𝑘−1 = {𝑖𝑖1, … , 𝑖𝑖𝑘𝑘−1} is the set of items that have been administered as the first k −  1 
items.  

The problem of constrained test assembly can be stated as follows: At each position 𝑘𝑘 =
1,2, … ,𝑁𝑁, select an item 𝑖𝑖𝑘𝑘+1 that maximizes the information measure while making sure that, 
in the end, the complete test S𝑁𝑁 = {𝑖𝑖1, … , 𝑖𝑖𝑁𝑁} is feasible. In general, when selecting each item, 
it is necessary to ascertain that a path leading to a feasible full-length test remains open. The 
STA (van der Linden & Reese, 1998) addresses this problem by assembling full-length feasible 
tests, called shadow tests, from which individual items are then selected. That is, on selection 
of item 𝑖𝑖𝑘𝑘, a feasible test S∗ ⊃ S𝑘𝑘−1 is computed, containing all previously administered items 
and maximizing test information. This requires solving the optimization problem  

S∗ = argmaxE⊂P,S𝑘𝑘−1⊂E ∑ 𝐼𝐼𝑖𝑖�𝜃𝜃�𝑘𝑘−1�𝑖𝑖∈E , (4) 

subject to the condition that E is a feasible test. All items in A𝑘𝑘 = S∗\S𝑘𝑘−1 are available to be 
selected and among those, item 𝑖𝑖𝑘𝑘 is selected as the item that maximizes information,  

𝑖𝑖𝑘𝑘 = argmax𝑖𝑖∈A𝑘𝑘𝐼𝐼𝑖𝑖�𝜃𝜃�𝑘𝑘−1 �. (5) 

By selecting items from optimal feasible tests, the STA not only guarantees that each test 
assembly process produces a feasible test but also that items providing maximum information 
at the current provisional estimate, ˆ,θ are used. Although the shadow tests are optimized for the 
provisional θ level, they can be shown to approximate the optimal value of the information 
criterion at the true θ level under reasonable conditions (van der Linden & Glas, 2010). 

However, finding S∗ in Equation 4 gives rise to the aforementioned computationally hard 
optimization problem. The approach put forward here simplifies this optimization problem by 
narrowing down the class of constraints under consideration to matroid constraints. Optimal 
item selection under matroid constraints can then be implemented based on matroid optimiza-
tion with either the greedy algorithm or matroid intersection algorithms. By establishing that 
lower and upper bounds on categorical item attributes can be expressed as matroid constraints, 
the matroid optimization approach is applicable to practically relevant problems in test 
assembly such as content balancing and the avoidance of co-occurring “enemy items.” The 
CAT literature describes item banks with compatible content structures—for example, Barnard, 
2015; Chang and Ansley, 2003; Davis, 2004; Kröhne, Goldhammer, and Partchev, 2014; 
Leuders et al., 2017; Leung, Chang, and Hau, 2000, 2003; Li and Schafer, 2005; Luecht, 1996; 
and Yi, Zhang, and Chang, 2008, 2006.  

The implications of the findings of this study are, hence, twofold. First, for applicable types 
of constraints, matroid optimization provides an alternative method of optimal constrained test 
assembly. In particular, the greedy algorithm provides an attractive method for the assembly of 
optimal tests because it is very simple to implement, while matroid intersection provides an 
alternative optimization method that can be used within the STA and which is, in contrast to 
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integer programming, a polynomial time algorithm. Second, the optimality of the greedy choice 
can be used to analyze related heuristics such as the maximum priority index (MPI; Cheng & 
Chang, 2009) and Kingsbury & Zara’s constrained computerized adaptive testing (CCAT; 
1991). As discussed below, a modified version of CCAT, termed MCCAT (Leung et al., 2000, 
2003), can be identified as an instance of the greedy algorithm. These results contribute to 
demarcating constraint specifications that can be treated optimally with simple algorithms and 
thus can guide test designers in the choice of the appropriate constrained item selection method 
for a particular test.  

Method 

The Greedy Algorithm 
In order to give a formal description and analysis of the greedy item selection algorithm, it 

is necessary to introduce some facts and definitions from matroid theory, which can be found 
in Helman, Moret, and Shapiro (1993) or Lawler (1976). The formalism of set systems is used 
to describe the collection of feasible subtests, that is, those item sets that constitute admissible 
intermediate test states. Let S be a set and ℱ a collection of subsets of S. Then the pair (S, ℱ) is 
called a set system. Given a set system (S, ℱ) , the extension of a set  X ∈ ℱ is the set of all 
elements of S that can be included in X yielding a set in  ℱ, that is,  

ext X = {𝑦𝑦 ∈ S: X ∪ {𝑦𝑦} ∈ ℱ}. (6) 

The greedy algorithm for constrained item selection works as follows: Starting from S0 = ∅, it 
selects for each position k =  1, … , N, the most informative item from ext Sk−1 as the kth item. 
That is,  

𝑖𝑖𝑘𝑘 = argmax𝑖𝑖�𝐼𝐼𝑖𝑖�𝜃𝜃�𝑘𝑘�: 𝑖𝑖 ∈ P\S𝑘𝑘−1� (7) 

If no additional assumptions are made on the structure of  ℱ, the greedy algorithm may not be 
able to terminate on a maximal feasible set. Indeed, a necessary condition for the greedy 
algorithm to work is that each feasible set can be built from the empty set by including one 
element at a time. This is ensured by requiring that  ℱ be hereditary, that is, if S ∈  ℱ and T ⊂
S, it follows that T ∈ ℱ. That is, in a hereditary set system, all subsets of feasible sets are 
feasible.  

When operating on a hereditary set system, the greedy algorithm is guaranteed to arrive at 
a maximal feasible set M, that is, M is not contained in any other feasible set. To see this, note 
that if there was a feasible superset M′ of M, then by heredity M′\M ⊂ ext M; therefore, the 
greedy algorithm would not have terminated on M. However, the maximal feasible sets in a 
hereditary set system  ℱ do not necessarily have the same cardinality; thus, complete tests 
assembled by the algorithm may have different lengths. This can be remedied by additionally 
requiring that  ℱ satisfy the axiom of augmentation, that is,  

 
X, Y ∈ ℱ, |X| = |Y| + 1 ⇒ ∃𝑥𝑥 ∈ X\Y: Y ∪ {𝑥𝑥} ∈ ℱ. (8) 
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By virtue of Equation 8, any feasible set in a hereditary set system can be extended to a feasible 
set of maximum cardinality. Consequently, all maximal feasible sets in a hereditary set system 
with this property have the same cardinality. 

A hereditary set system that obeys the augmentation axiom is called a matroid. The rank of 
a matroid is the cardinality of its maximal feasible sets. Matroids are an important class of set 
systems in the study of greedy algorithms because the greedy algorithm optimizes all linear 
objective functions (Edmonds, 1971; Gale, 1968; Rado, 1957)1; that is, for any assignment of 
a real-valued weight w(e) to each element e of M, the greedy algorithm terminates at a maximal 
feasible set B for which w(B)  = ∑ w(e)e∈B  is greater than for any other feasible set. The 
problem of optimizing test information with respect to an additive information criterion differs 
from the optimization of a linear objective inasmuch as the objective function changes when 
the θ estimate does. The next section establishes that in optimizing test information under a 
matroid constraint, the greedy algorithm is equivalent to the STA and thus is, in fact, optimal.  

Optimality of the Greedy Algorithm for Item Selection 
The purpose of this section is to prove that under the assumption that the system of feasible 

subtests is a matroid, the greedy algorithm produces exactly the same test sequences as the STA 
does. Hence, in this case, both algorithms are equivalent, showing that the simple greedy 
algorithm is sufficient to solve the constrained test assembly optimally.  

Proposition 1. If  (P,ℱ) is a matroid, then for each fixed response pattern, the items selected 
by the greedy algorithm as per Equation 7 coincide with those selected by the STA as per 
Equation 5. 
 

Proof. The proof uses mathematical induction over k and the fact that the greedy algorithm 
optimizes all linear weight functions on a matroid. As the first item (k =  1), the greedy algo-
rithm selects  

 𝑖𝑖1 = argmax𝑖𝑖�𝐼𝐼𝑖𝑖�𝜃𝜃�0�: {𝑖𝑖} ∈ ℱ�. (9) 

By the optimality of the greedy algorithm on the matroid  ℱ, the greedy algorithm, if run until 
termination, would arrive at the test  

argmaxE⊂P,E∈ℱ ��𝐼𝐼𝑙𝑙�𝜃𝜃�0�
𝑙𝑙∈E

�, 

 

(10) 

which is the test S∗ used by the STA, as given in Equation 4, and from which the STA indeed 
proceeds to select the same maximum information item x1 as the greedy algorithm.  
 
Inductive step: By the inductive hypothesis, S𝑘𝑘−1 ∈ ℱ is the same for both the greedy algorithm 
and the STA. By Equation 7, the greedy algorithm selects  
 

                                                 
1 The exact class of set systems for which this is true, however, is larger and was characterized by Helman et al. 
(1993). 
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𝑖𝑖𝑘𝑘 = argmax𝑖𝑖∈P\S𝑘𝑘�𝐼𝐼𝑖𝑖�𝜃𝜃�0�: S𝑘𝑘 ∪ {𝑖𝑖} ∈ ℱ�. (11) 

 
Again, by the optimality of the greedy algorithm on the matroid  ℱ, the greedy algorithm star-
ting from S𝑘𝑘−1, if run until termination, would arrive at the test  

argmaxE⊂P:S𝑘𝑘−1⊂E,E∈ℱ𝐼𝐼E�𝜃𝜃�𝑘𝑘−1�, (12) 

which is the test S∗ used by the STA as per Equation 4. Now, again, the STA’s choice of the 
maximum information item in S∗\S𝑘𝑘−1 is just the greedy choice 𝑖𝑖𝑘𝑘.  

It should be noted that equivalence of constraints as used by the greedy algorithm and the 
STA, respectively, is established by equality of the maximal feasible sets (the complete feasible 
tests) of the matroid. That is, both algorithms are operating on equivalent constraints if the 
maximal feasible sets of the matroid are the sets over which STA carries out its optimization. 
For the matroids used in the present paper, this will be shown in the following section.  

Specification of Feasible Subtests 
Usually, the description of constraint-compliant tests is made on the level of complete tests. 

The greedy algorithm, however, works in terms of feasible subtests; therefore, it is necessary 
to specify the item sets that lead to complete feasible tests. The greedy algorithm applies if the 
collection of feasible subtests has the structural properties of a matroid. The analysis of these 
properties depends solely on the constraints and can be conducted on an abstract level; in 
addition, minimal requirements on item bank composition are identified. In what follows, a 
number of practically relevant constraints are covered.  

Categorical Upper Bounds 
 Generalizing upon the results of the previous section, arbitrary upper bounds on the number 

of items from certain categories can be enforced as follows: Denote by C1, … , C𝑀𝑀 ⊂ P the M 
disjoint categories. Then a test T of length N is feasible if T contains at most 𝑁𝑁𝑗𝑗 items from 
category C𝑗𝑗. Clearly, any set of items S can be extended to a feasible test of length N if  

 
|S| ≤ 𝑁𝑁        

 
(13) 

and  

�S ∩ C𝑗𝑗� ≤ 𝑁𝑁𝑗𝑗 , for all 𝑗𝑗 = 1, … ,𝑀𝑀.  
(14) 

In defining the system of feasible subtests by  
 

S ∈ ℱUpper:⇔ S satisfies Inequalities 13 and 14, 
 

(15) 

it is evident that a maximal feasible subtest with respect to Inequality 13 is a feasible test of 
length N that adheres to the upper bound of each category. The set system ℱUpper is a matroid 
known as the partition matroid (see Lawler, 1976, for a proof of its properties). Note that the 
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rank of the matroid defined by Inequalities 13 and 14 is min(∑ 𝑁𝑁𝑗𝑗𝐿𝐿
𝑖𝑖=1 ,𝑁𝑁). Thus, if 𝑁𝑁 ≥ ∑ 𝑁𝑁𝑗𝑗𝐿𝐿

𝑖𝑖=1  
and each category holds a sufficient number of items, that is �C𝑗𝑗� ≥ 𝑁𝑁𝑗𝑗 for all j, then the greedy 
algorithm will terminate at a test of length N. The greedy algorithm on ℱUpper can be imple-
mented very efficiently based on the observation that the extension of any feasible subtest of 
length k consists exactly of those items in P\S𝑘𝑘−1 whose category counts have not been 
exceeded. Denote these categories as the active categories and the remaining categories as the 
blocked categories. As only items from the active categories may be selected, there is no need 
to evaluate the information criterion on items from blocked categories. After selecting the kth 
item from some active category C, there only remains to check whether category C needs to be 
blocked, which is a matter of counting items from C in S𝑘𝑘 and comparing to the bound. As 
evaluating the information criterion can be relatively costly, the computational expense can be 
reduced significantly compared to a naive implementation of the algorithm.  

Enemy Constraints  
Test specifications may require that certain items are not administered coincidentally to one 

examinee. For instance, items derived from the same stem may be so similar that they clue each 
other (Leuders et al., 2017), such that coincidental usage would threaten local independence. 
This type of constraint can be enforced by using ℱUpperwith each C𝑗𝑗 containing a set of enemies 
and setting 𝑁𝑁𝑗𝑗 = 1 to ensure that, at most, one item from C𝑗𝑗 is administered. This amounts to 
blocking any enemy set once one of its items is administered, a procedure that coincides with 
the heuristic treatment of enemy constraints. By recognizing this as an instance of the greedy 
algorithm on the matroid ℱUpper, it becomes obvious that (in the absence of additional 
constraints) a simple blocking strategy is the optimal way to handle enemy constraints.  

Categorical Lower Bounds 
If lower bounds are to be enforced on the number of items from certain categories C1, … , C𝑚𝑚, 

a feasible subtest S needs to have the following property: The number of items still needed to 
reach the lower bound of each category must not exceed the total number of items needed to 
complete the test. That is, denoting the lower bound of C𝑗𝑗 by 𝑀𝑀𝑗𝑗, any feasible S must satisfy  

 

𝑁𝑁 − |S| ≥��𝑀𝑀𝑗𝑗 − �S ∩ C𝑗𝑗��
+

𝑚𝑚

𝑗𝑗=1

, (16) 

where  
 

𝑥𝑥+: = max(x,0), 
 

(17) 

and additionally,  
 

|S| ≤ 𝑁𝑁, 
 

(18) 

to ensure a test length of N. The system ℱLower of sets satisfying Inequalities 16 and 18 is a 
matroid (see Lemma 1, Appendix), whose maximal feasible sets contain at least the required 
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number of items from each category. If the sum of the lower bounds does not exceed the desired 
test length, the rank of ℱLower is N if only each category j is represented with at least C𝑗𝑗 items 
in the item bank. Thus, under these most natural conditions, the greedy algorithm will terminate 
at feasible tests of full-length N. 

Similar to the case of categorical upper bounds, there is a computational shortcut available 
that would save computational expense: If in Inequality 16, the number of items needed to 
complete the test (left-hand side) is strictly greater than the sum of items needed to satisfy all 
lower bounds (right-hand side), any item maximizing information may be selected, disregarding 
category membership. If equality holds, however, selection must be constrained to categories 
whose lower bounds are not yet met, ensuring that the right-hand side of Inequality 16 will be 
decremented by including the selected item. Again, the value of the information function need 
not be evaluated for items from the remaining categories in this case.  

Matroid Intersection 
Many practical applications necessitate the application of combinations of several types of 

constraints. For instance, flexible content constraints (Cheng, Chang, & Yi, 2007) involve a set 
of lower bound constraints and a set of upper bound constraints on the number of items from 
each content category. Similarly, by enforcing a set of upper bound constraints for each pair of 
categorical attributes, content balancing can be achieved for both attributes simultaneously, 
allowing, for example, balancing test composition with respect to both content area and answer 
key. In the matroid optimization approach to item selection, this involves two matroids 
specified on the item bank. Let M1 and M2 be two matroids defined on the item bank P. Then, 
assembling feasible tests requires that during the test, all subtests are feasible in both M1 and 
M2. However, the set system  

 
M1 ∩ M2 = {A ∩ B|A ∈ M1, B ∈ M2} (19) 

containing all sets that are feasible in both matroids is, in general, not a matroid. Thus, the 
greedy algorithm is not guaranteed to succeed in building optimal feasible tests. In particular, 
it is possible that simply selecting maximally informative items, such that the resulting subtest 
is feasible in both M1 and M2, quickly leads to a subtest that cannot be extended, thwarting the 
assembly of full-length tests.  

The related problem of finding a set of maximal weights that is feasible in several matroids 
has been considered in the literature as “weighted matroid intersection.” Although weighted 
matroid intersection is NP-hard if at least three matroids are involved, polynomial time 
algorithms for the weighted intersection of two matroids have been devised by, among others,  
Brezovec, Cornuéjols, and Glover (1986), Edmonds (1979), and Lawler (1976). By using item 
information 𝐼𝐼𝑖𝑖(𝜃𝜃�𝑘𝑘−1) as the weight of item i, any of these algorithms can be employed in con-
strained test assembly. In contrast to the case of one matroid constraint, the feasibility of 
assembling full-length tests depends on the combination of attributes in the item bank and must, 
as is the case with STA, be tested in simulation. For the simulation study presented below, a 
procedure was used based on the first algorithm devised by Brezovec et al.(1986) that returns 
optimal intersections of the desired length. Using this algorithm, an optimal intersection is 
computed for each position, and the most informative item is chosen from this intersection for 
the present provisional estimate of θ. Items that have already been administered are held fixed 
in the intersection by assigning large weights to them. This procedure can be subsumed under 
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the STA; however, the actual optimization step is carried out by a matroid algorithm. Thus, the 
theoretical properties of the STA—most importantly, optimality—directly carry over. 

Relation to Other Methods 

CCAT  
Kingsbury and Zara (1991) introduced the CCAT algorithm, which balances content 

composition of tests under an upper bound constraint on one categorical attribute in a very 
straightforward fashion. First, the content area that deviates most from its bound is identified; 
then, item selection is constrained to items belonging to this content area. The procedure, while 
exceedingly easy to implement, has two drawbacks: The sequence of content areas of 
administered items can be quite predictable, raising test security concerns (Chen & Ankenman, 
2004). Moreover, item selection is constrained more than necessary, leading to an avoidable 
loss of measurement efficiency. Addressing the first drawback, Leung et al. (2000, 2003) 
proposed a modification of CCAT. Their MCCAT selects the most informative item from any 
category that is below its upper bound. This procedure coincides precisely with the greedy 
algorithm on the respective upper bound matroid introduced above and, hence, by Proposition 1 
as well as with the STA.  

STA  
As described above, the greedy algorithm produces tests that coincide with those produced 

by the STA, provided that the system of feasible subtests has the properties of a matroid. As 
discussed below, the same holds for the combination of two matroid constraints by the use of 
matroid intersection. However, the greedy algorithm is distinct from the STA in that it does not 
require the computation of shadow tests. Instead, optimal feasible tests can be built by adding 
one item at a time. Compared to the STA, implementing the greedy algorithm is significantly 
less involved and requires less computational effort. In general, optimal intersections of 
matroids cannot be found by a greedy algorithm; hence, the application of matroid intersection 
to constrained test assembly requires optimizing in terms of complete optimal tests. Test 
assembly by matroid intersection is thus a variant of the STA, albeit using a different 
optimization technique. In contrast to integer programming, it can be executed in polynomial 
time if two matroids are intersected. The fact that combinations of constraints must be 
optimized in terms of complete tests sheds light on the boundary between simple and hard 
problems in constrained test assembly and, at the same time, provides some insight into the 
theoretical limitations of greedy-like heuristics such as those discussed below.  

MPI 
The MPI method (Cheng & Chang, 2009) works by weighting item information using a 

priority index. The priority index is specified for the constraint at hand. For content balancing, 
the priority index can be defined as the remaining quota of items from a specific content 
category. As more items from the content area are selected, the priority index decreases and the 
inclusion of further items from the same content area becomes less likely. As a consequence of 
attaching lower weights to categories that have seen some usage, MPI tends to favor items from 
categories that deviate further from their target administration counts. Therefore, items from 
these categories are disregarded even if a more informative item could be chosen without 
violating the constraints, entailing a loss of efficiency compared to the optimal item choice. 
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Thus, in general, MPI is not maximally efficient. However, using Proposition 1, it can be shown 
that MPI solves the case of enemy constraints optimally, as it coincides with the greedy 
algorithm in this case. To exemplify this, suppose that items belonging to the same set of 
enemies E1, … , E𝑚𝑚 ⊂ P may not be administered in one test. In the framework of MPI, the 
scaled quota left for the constraint associated with E𝑙𝑙 is 𝑓𝑓𝑙𝑙 = 1 − 𝑥𝑥𝑙𝑙, where  

𝑥𝑥𝑙𝑙 = �1,  if an item from E𝑙𝑙 has been used 
0, otherwise  (20) 

As a consequence, assuming that all constraints have weight 1, the priority index of item i 
will be zero if i belongs to an enemy set from which an item has already been used; otherwise, 
the priority index of item i will be its unweighted information. In effect, MPI will choose the 
item having maximum information that is not in violation with any enemy constraint. This is 
exactly the greedy choice and, equivalently, the choice made by the STA for this set of 
constraints.  

Simulation Study 
The simulation study was based on an item bank of 500 synthetic items assumed to be 

calibrated under a two-parameter logistic model to a level of precision that allows treating item 
parameters as known during the adaptive test. The item bank was generated by drawing item 
difficulties and item discriminations from a standard normal distribution and a log-normal 
distribution with mean 0.25 and standard deviation (SD) of 0.125, respectively. From this item 
bank, derived item banks were generated by assigning a trichotomous categorical attribute, 
content category, in different ways. In item bank A, item difficulties and assigned content areas 
were independent. In item bank B, items from Category 1 were more difficult [mean =  −1.11, 
standard deviation (SD)  =  0.83] and items from Category 3 were easier (mean = −1.50  
SD =  0.76) than those from Category 2 (mean =  −0.05, SD =  0.87). Additionally, a second 
categorical attribute, answer key, was introduced. It assumed four different, uniformly 
distributed values and was used only in the condition involving upper bounds on two attributes. 
The influence on item bank size was investigated by comparing the complete item banks A and 
B against smaller versions generated by sampling a 250- and a 125-item subset from each. θ 
estimates were computed using the expected a posteriori estimator with a standard normal prior. 
Constraint specifications were used that involved either lower or upper bound constraints on 
one categorical attribute, as well as flexible content constraints and upper bound constraints on 
two categorical attributes. The values used for the bounds are summarized in Table 1. In all 
simulation runs, the test length was 30.  

 
Table 1. Values of Upper and Lower 
Bounds Used in the Simulations 

 Content Category Answer Key 
Value 0 1 2 0 1 2 3 
Lower bound  5 5 5 - - - - 
Upper bound  11 18 11 10 10 10 10 

 

Average SEM (Equation 1) realized by matroid optimization, MPI, and CCAT (where 
applicable) across 5,000 replications are reported, where each replication was carried out for 
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seven equidistant values of θ between −2 and 2. As a baseline, the SEM associated with the 
best feasible test is reported. The latter was computed by any of the equivalent optimal 
algorithms (STA or matroid optimization), using the true θ instead of an estimate. The best 
feasible test’s information can be understood as effective item bank information when taking 
into account constraints on test length and test composition. In order to allow interpretation of 
the differences in SEM, the potential saving in test length that could be realized by choosing 
the best-performing algorithm over the others is reported, whereas raw SEMs are reported in 
Table 2. The reported number was determined by successively cutting the test length of the 
bestmethod until measurement precision was decreased to the level of the other methods for 
each 𝜃𝜃; then, the maximum over the 𝜃𝜃 grid was taken. 

Table 2. Mean SEM Attained by Item Selection  
Algorithms for Different Types of Constraints  
Using Item Banks with 125, 250, and 500 Items  

Type of Constraint 
 and Method  

Item Bank A Item Bank B 
125 250 500 125 250 500 

Upper bound       
    Best feasible test  0.606  0.464  0.406  0.626  0.479  0.415  
    Matroid optimization  0.609  0.467  0.409  0.630  0.482  0.419  
    MPI  0.614  0.469  0.411  0.640  0.490  0.427  
    CCAT  0.619  0.472  0.414  0.655  0.501  0.440  
Lower bound       
    Best feasible test  0.604  0.464  0.405  0.620  0.477  0.418  
    Matroid optimization  0.607  0.466  0.408  0.624  0.480  0.422  
    MPI  0.607  0.466  0.408  0.624  0.480  0.422  
    CCAT  0.607  0.466  0.408  0.624  0.480  0.422  
Flexible constraint       
    Best feasible test  0.606  0.464  0.406  0.627  0.481  0.420  
    Matroid optimization  0.609  0.467  0.409  0.631  0.484  0.425  
    MPI  0.614  0.469  0.411  0.640  0.490  0.428  
    CCAT  0.619  0.472  0.414  0.655  0.501  0.440  
Two upper bounds       
    Best feasible test  0.606  0.465  0.406  0.626  0.479  0.415  
    Matroid optimization  0.609  0.468  0.409  0.631  0.483  0.419  
    MPI  0.615  0.473  0.413  0.641  0.492  0.429  

                 Note. The results of STA coincided—as postulated by theory—with those of matroid  
                 optimization and, hence, are not shown.  

Computational Expense 
During the simulation runs, precise computation times were recorded using the high-

resolution clock of the computer (see Table 3). With mean computation times between 
approximately 0.3 and 30 milliseconds, all item selectors were fast enough for practical 
application by a large margin. In the settings involving one constraint, the simple algorithms 
(MPI, CCAT, and the greedy algorithm) were quite close to each other, but 10 to 20 times faster 
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Table 3. Mean Computation Times (Standard Error of the Mean in Parentheses) Measured in Milliseconds 

Type of Constraint 
 and Method  

Item Bank A Item Bank B 
125 Items 250 Items 500 Items 125 Items 250 Items 500 Items 

Upper bound       
    Matroid optimization  0.31 (0.001)  0.34 (0.001)  0.38 (0.001)  0.33 (0.001)  0.35 (0.001)  0.38 (0.001)  
    STA  3.82 (0.003)  7.20 (0.006)  13.15 (0.009)  3.82 (0.003)  7.03 (0.005)  13.33 (0.011)  
    MPI  0.36 (0.001)  0.42 (0.001)  0.48 (0.001)  0.36 (0.001)  0.43 (0.001)  0.45 (0.001)  
    CCAT  0.35 (0.001)  0.36 (0.001)  0.39 (0.001)  0.33 (0.001)  0.35 (0.001)  0.39 (0.001)  
Lower bound       
    Matroid optimization 0.27 (0.001)  0.30 (0.001)  0.34 (0.001)  0.29 (0.001)  0.31 (0.001)  0.35 (0.001)  
    STA  3.78 (0.003)  7.24 (0.005)  13.15 (0.009)  3.81 (0.003)  7.02 (0.004)  13.51 (0.012)  
    MPI  0.29 (0.001)  0.32 (0.001)  0.36 (0.002)  0.28 (0.001)  0.31 (0.001)  0.36 (0.002)  
    CCAT  0.27 (0.001)  0.28 (0.001)  0.34 (0.001)  0.28 (0.001)  0.29 (0.001)  0.32 (0.001)  
Flexible constraint       
    Matroid optimization  4.04 (0.004)  5.53 (0.009)  10.62 (0.026)  4.90 (0.017)  10.89 (0.038)  24.31 (0.078)  
    STA  7.50 (0.027)  14.94 (0.066)  29.21 (0.110)  8.34 (0.054)  14.10 (0.053)  20.53 (0.117)  
    MPI  0.39 (0.004)  0.41 (0.002)  0.51 (0.007)  0.41 (0.004)  0.44 (0.005)  0.49 (0.007)  
    CCAT  0.37 (0.004)  0.37 (0.002)  0.41 (0.006)  0.38 (0.003)  0.40 (0.005)  0.43 (0.004)  
Two upper bounds       
    Matroid optimization  3.50 (0.003)  6.04 (0.009)  11.85 (0.031)  3.50 (0.005)  6.37 (0.010)  11.78 (0.023)  
    STA  5.16 (0.003)  9.70 (0.005)  19.02 (0.011)  5.05 (0.003)  9.93 (0.005)  18.54 (0.010)  
    MPI  0.47 (0.000)  0.54 (0.001)  0.65 (0.001)  0.47 (0.000)  0.54 (0.001)  0.61 (0.000)  

               Note. All calculations were implemented on a 2Ghz Intel Xeon E5-2620 CPU equipped with 64GB of RAM.  
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than the STA. When a second constraint was added, MPI became only slightly slower. The increase 
in computational time needed to compute matroid intersections over applying the greedy algorithm 
was more pronounced, but the computation times were at least competitive to the STA, and in 
many settings significantly shorter. These results suggest that the greedy algorithm can be 
implemented just as computationally efficiently as the heuristic methods of MPI and CCAT and 
that the computation times for matroid intersection are comparable to those of the integer 
programming model commonly employed in the STA. These timing results must be interpreted 
with some caution, however, as they reflect properties of the concrete implementations used. At 
least for the matroid intersection—which is more complex than, for example, the greedy 
algorithm—more efficient implementations than the one used here may very well be devised.  

Lower Bound Constraints 
Among the item selection algorithms tested, only the STA and the greedy algorithm support lower 
bound constraints natively, while for MPI and CCAT, a two-phase item selection procedure 
(Cheng et al., 2007) needs to be used. In the first phase, the lower bounds are treated as upper 
bounds in a test of length 𝑁𝑁1 = ∑ 𝑀𝑀𝑖𝑖

𝑚𝑚
𝑖𝑖=1 . Thus, at the end of the first phase, the lower bounds are 

satisfied, and unconstrained item selection can be used in the second phase for the remaining 𝑁𝑁 −
𝑁𝑁1 items. The differences in SEM between the methods found in this setting are negligibly small 
(see Table 2). As described in the next section, item selection with upper bounds produces marked 
differences between the methods. Hence, this is attributable to the second, unconstrained phase of 
item selection that makes up for the second half of the test and apparently suffices to all but level 
out any differences accumulated in the first phase.  

Upper Bound Constraints 
The SEM realized by the greedy algorithm was lower than that of CCAT and MPI (see Table 

2). The difference between the methods varied markedly between the two item banks. For item 
bank A, which exhibited no confounding of categories and item parameters, differences were 
relatively small, amounting to an approximate one-item advantage of the greedy algorithm over 
MPI and CCAT. The small difference was expected, since each category offers a large number of 
items at every level of θ. Consequently, the limiting or biasing of item selection toward under-
represented categories in CCAT and MPI is without severe consequences, but still amounts to a 
difference of one to three items. However, item bank B, with its pronounced dependency between 
item difficulty and category membership, led to more pronounced differences among the item 
selection methods. Here, the SEM realized by CCAT was also greatest, while MPI fared markedly 
better than CCAT. The advantage of the greedy algorithm corresponded to four items over MPI 
and eight to nine items over CCAT (see Table 4). 

Flexible Constraints 
Flexible content constraints involve imposing a lower bound, as well as an upper bound, on the 
number of items from each content area. As described above, both lower bounds and upper bounds 
induce a matroid on the item bank. Hence, management of flexible constraints can be achieved by 
matroid intersection. This allows for an optimal solution that provides full adaptivity, equivalent 
to the STA. While the latter allows specifying flexible constraints directly, implementing flexible 
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Table 4. Difference in Mean SEM Between Item Selection 
Methods Expressed in Terms of the Number of Items Required 

to Reach Measurement Precision of the Best Performing Method 
 Type of Constraint 

 and Method 

Item Bank A Item Bank B 
 125 250 500 125 250 500 
 Upper bound       
     Matroid optimization  -  -  -  -  -  -  
     MPI  2 1 2 4 4 4 
     CCAT  3 2 3 8 8 9 
 Lower bound       
     Matroid optimization  - - - - - - 
     MPI  - - - - - - 
     CCAT  - - - - - - 
 Flexible constraint       
     Matroid optimization  - - - - - - 
     MPI  2 1 2 4 4 4 
     CCAT  3 2 3 8 10 10 
 Two upper bounds       
     Matroid optimization  - - - - - - 
     MPI  2 3 3 5 5 5 

                  Note. The results of STA coincide—as postulated by theory—with those of matroid  
                  optimization and, hence, are not shown. 

 
constraints with MPI and CCAT requires the application of a two-phase item selection procedure 
(Cheng & Chang, 2009; Cheng et al., 2007). Although thisapproach could, in principle, be used 
with the greedy algorithm as well, the two-phase procedure effectively divides the test into two 
adaptive testlets, which comes at the cost of reduced adaptivity and efficiency. Empirically, this is 
reflected in the superior performance of matroid intersection (see Tables 2 and 4). The advantage 
over MPI amounts to a difference in test length of one to two items for item bank A and four items 
for item bank B, while CCAT is between two and three items (item bank A) and eight to 10 items 
(item bank B) behind.  

Two Upper Bounds 
Upper bounds on two distinct categorical attributes—here, content category and answer key— 

can be managed in the matroid framework by intersecting two upper bound matroids. As managing 
multiple categorical attributes is out of the scope of CCAT, it is not available in this setting.2 
Consistent with the other settings, the theoretically optimal matroid-based algorithm achieves a 
smaller SEM than MPI across all item banks (see Table 2). Again, the size of the gap depends on 
the conditional distribution of difficulty by content category, amounting to a difference in test 
length of two to three items for item bank A and five items for item bank B.  
                                                 
2 In principle, CCAT could be used by forming the Cartesian product of categories and imposing constraints on each 
combination of categories. However, this leads to a more severely constrained tests and, during preliminary trials, was 
found to lead to non-competitive performance. 
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Discussion 
Constraint specifications involving upper or lower bounds on categorical item attributes were 

shown to introduce a matroid on the item bank, thus enabling the use of matroid optimization 
algorithms for constrained item selection. Given equivalent sets of constraints, the tests assembled 
by matroid optimization coincided with those assembled by the STA. Thus, the matroid optimi-
zation approach can be understood as an alternative to the STA, which, by exploiting the structure 
warranted by matroid constraints, can be computed at a reduced computational complexity. The 
matroid optimization approach and the STA can be subsumed as methods using combinatorial 
optimization, whereas matroid intersection takes the role of an alternative optimization technique 
within the STA. Of the matroid optimization algorithms that have been applied in the present work, 
the greedy algorithm seemed to be of greater practical appeal, as it combines the simplicity of 
heuristic item selection methods such as MPI and CCAT with the theoretical guarantees and 
optimality afforded by the STA. Furthermore, by using the optimality of the greedy item choice as 
an analytic tool, it becomes obvious where exactly the heuristics fall short of attaining optimality 
even for simple constraints—and if they, conversely, as in the case of MCCAT, are actually 
optimal. 

Using efficient algorithms for weighted matroid intersection, the combination of two matroid 
constraints can be treated. In this case, however, more involved algorithms for matroid intersection 
are required, and optimization has to be implemented in terms of complete tests. The latter is of 
considerable interest, as it highlights the necessity of using look-aheads for optimal test assembly 
when complex constraints are involved.  

The range of problems solvable by matroid optimization remains limited by two factors. First, 
only matroid constraints can be used and, although other examples of matroids relevant to test 
assembly may be identified, not all conceivable types of constraints should be expected to have 
this property. Second, solving the intersection problem across three and more matroids is NP-hard 
just as the 0-1 integer program, which is commonly employed within the STA. 

The matroid-based approach thus has two advantages: First, the greedy algorithm combines 
the simplicity and efficiency of heuristic methods with the optimality of the significantly more 
complicated mathematical programming approaches, and matroid intersection provides an alter-
native optimization algorithm that can be used with the STA. Second, matroid theory opens up a 
new perspective on the structure of constrained test assembly problems, which can be used for the 
analysis of existing methods as well as in the implementation of CATs and, hence, allows for 
making theoretically grounded choices in item selection methods. The simulation study presented 
above indicates that, even for the simplest case of an upper bound on one categorical attribute, the 
advantage of the matroid optimization approach over common heuristics can be equivalent to a 
reduction in test length of up to 30%. The advantage of the optimization approach became 
particularly obvious when mean item difficulties varied across content categories, whereas item 
bank size did not seem to impact relative differences between the methods. While the STA is 
equivalent in terms of measurement efficiency, using matroid optimization by the greedy algorithm 
in place of the STA rids CAT programs from the dependency on external solvers, thus enabling 
savings in development, maintenance, and licensing costs. Furthermore, the greedy algorithm can 
easily be implemented and run on platforms that either lack available solvers or computational 
power, thereby enabling the delivery of efficient CAT programs on a wider range of platforms and 
devices.  
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Appendix 
Proof of Lemma 1 

Lemma 1 can be proved by showing that ℱLower has the properties of heredity and allows augmen-
tation and, thus indeed, is a matroid.  

Lemma 1. Let P be an item bank and �Cj ⊂ P|j = 1, … , L� a mutually disjoint system of item cat-
egories with non-negative lower bounds M1, … , ML. If N is such that  

 

𝑁𝑁 ≥�𝑀𝑀𝑗𝑗

𝐿𝐿

𝑗𝑗=1

, (21) 

then the set system ℱLower of feasible subtests S ⊂ P with the properties  

 

𝑁𝑁 − |S| ≥��𝑀𝑀𝑗𝑗 − |S ∩ C𝑗𝑗|�
+

𝐿𝐿

𝑗𝑗=1

 (22) 

and  

|S| ≤ 𝑁𝑁 (23) 

is a matroid of rank N.  

Proof. Heredity. Clearly, ℱLower is non-empty since ∅ ∈ ℱLower. The claim of heredity follows 
from the assertion that if S is feasible and x ∈ S, then S\{𝑥𝑥} is feasible. Let S ∈ ℱLower and x ∈ S. 
Then S\{x} is feasible if and only if  

𝑁𝑁 − |S\{𝑥𝑥}| = 𝑁𝑁 − |S| + 1 ≥��𝑀𝑀𝑗𝑗 − �(S\{𝑥𝑥}) ∩ C𝑗𝑗  ��
+

.
𝐿𝐿

𝑗𝑗=1

 (24) 

Without loss of generality, it may be assumed that 𝑥𝑥 ∈ C𝑗𝑗∗, for some 1 ≤ 𝑗𝑗∗ ≤ 𝐿𝐿, because if the 
categories do not exhaust the item bank, a residual category with lower bound 0 may be introduced 
without altering ℱLower. Thus, Inequality 24 may be written as  

𝑁𝑁 − |S| + 1 ≥ � �𝑀𝑀𝑗𝑗 − |S ∩ C𝑗𝑗|�
+

+ �𝑀𝑀𝑗𝑗∗ − ��S\{𝑥𝑥} ∩ C𝑗𝑗∗���
+

𝑗𝑗∈{1,…,𝐿𝐿},𝑗𝑗≠𝑗𝑗∗
 (25) 
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which by subtraction of Inequality 22 for S transforms to 
 

1 ≥ �𝑀𝑀𝑗𝑗∗ − ��S\{𝑥𝑥} ∩ C𝑗𝑗∗���
+
− �𝑀𝑀𝑗𝑗∗ − �S ∩ C𝑗𝑗∗��

+
. 

 
(26) 

As �(S\{𝑥𝑥}) ∩ 𝐶𝐶𝑗𝑗∗� = �S ∩ C𝑗𝑗∗� − 1, which is true because by assumption 𝑥𝑥 ∈ C𝑗𝑗∗, Inequality 26  
holds if and only if 

 
1 ≥ �𝑀𝑀𝑗𝑗∗ − �S ∩ C𝑗𝑗∗� + 1�

+
− �𝑀𝑀𝑗𝑗∗ − �S ∩ C𝑗𝑗∗��

+
. 

 
(27) 

Inequality 27 holds because for any real number 𝜈𝜈, 

(𝜈𝜈 + 1)+ − 𝜈𝜈+ = �
0, if 𝑣𝑣 < −1,

𝜈𝜈 + 1, if − 1 ≤ 𝜈𝜈 < 0
1, if 𝜈𝜈 ≥ 0.

,  (28) 

Augmentation. Let S, T ∈ ℱLower, such that |T| = |S| − 1. If for T in Inequality 22, the left-hand 
side is strictly greater than the right-hand side, any 𝑥𝑥 ∈ T\S can be added to T yielding a feasible 
subtest. Thus, it may be assumed that  

 

𝑁𝑁 − |S| = ��𝑀𝑀𝑗𝑗 − |S ∩ C𝑗𝑗|�
+

𝐿𝐿

𝑗𝑗=1

 (29) 

and T ∪ {𝑥𝑥} is feasible if and only if adding x to T decreases the right-hand side of the last equation, 
which holds true if x belongs to a content category whose lower bound has not yet been met. 
Assume that  

 
∀𝑗𝑗: �𝑀𝑀𝑗𝑗 − �T ∩ C𝑗𝑗��

+
≤ �𝑀𝑀𝑗𝑗 − �S ∩ C𝑗𝑗��

+
. 

(30) 

Then, it follows that  
 

𝑁𝑁 − |T| = ��𝑀𝑀𝑗𝑗 − �T ∩ C𝑗𝑗��
+

𝐿𝐿

𝑗𝑗=1

 

≤��𝑀𝑀𝑗𝑗 − �S ∩ 𝐶𝐶𝑗𝑗��
+

𝐿𝐿

𝑗𝑗=1

 

≤ 𝑁𝑁 − |S| 
= 𝑁𝑁 − |T| − 1, 

 

 
 
 
 
 
 

(31) 

which is a contradiction. Thus, it exists 𝑗𝑗∗ such that  
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�𝑀𝑀𝑗𝑗∗ − �T ∩ C𝑗𝑗∗ ��

+
> �𝑀𝑀𝑗𝑗∗ − �S ∩ C𝑗𝑗∗ ��

+
 

(32) 

Therefore �T ∩ C𝑗𝑗∗� < �S ∩ C𝑗𝑗∗�, which implies existence of 𝑥𝑥 ∈ S ∩ C𝑗𝑗∗ with 𝑥𝑥 ∉ T (and thus 𝑥𝑥 ∈
S\T) such that  

 
�𝑀𝑀𝑗𝑗∗ − �T ∩ C𝑗𝑗∗ ��

+
= �𝑀𝑀𝑗𝑗∗ − �(T ∪ {𝑥𝑥}) ∩ C𝑗𝑗∗��

+
+ 1. 

(33) 
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